TRANSIENT RESPONSE OF COOLING TOWERS TO PROPAGATING BOUNDARY EXCITATION
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Introduction

Many axisymmetric shell structures such as cooling towers and nuclear
power plant containment structures can be subjected to traveling seismic
waves. The characteristic times defining the passage of the wave front
across the structure, may have significant effects on the response of the
cooling tower. At the present time these shell structures are analyzed
by subjecting the structure to seismic base motion. This type of motion
using linear theory induces a beam type response of the cooling tower and
does not permit other types of response in the structure. A traveling
wave solution physically more closely represents the actual problem and
allows the structure to respond in all of its natural modes. The cooling
tower problem is considered in the present investigation. The cooling
tower is analyzed as a shell of revolution by the finite element method.
The ground motion is assumed to be a traveling wave and is decomposed into
Fourier components for each time interval. The normal mode method in
conjunction with the Wilson-Theta integration technique is used to determine
the response of the cooling tower.

Analysis Procedure

The finite element method was used to determine the dynamic response of
a hyperboiloidal shell to a traveling wave. The problem to be solved is
essentially the determination of the response of a shell of revolution
subjected to a dynamic support displacement loading. The solution of the
problem will be carried out in the following manner:

(a) Determination of the modes and frequencies of a general shell
of revolution.

(b) Determination of the dynamic response of the shell by using a
modified form of the normal mode method.

(c) Studying the effect on the dynamic stresses in a typical cooling
tower shell design as the wave speed and wave shape are varied.

Free Vibration for a Discrete Dynamic System

Let the discrete dynamic system of n degrees of freedom be described by
the generalized coordinates q,, q,, ....q_, Or written as a column vector
{q}. 1t follows from the cla%sic%l dynamgcs that the kinetic energy T and
the potential energy V of the system can be expressed respectively as, for

small oscillations, 1 .euT .
T =3 {q}"[M] {q} @

v =2 (g} [x{q} 2)
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where [M] and [K] are symmetric mass and stiffness mitrices. Hamilton's

principle states
.t tz

2
6]' Ldt = 5_[ (T-V)dt = 0 2)
! B!
Substitution of equation (1) and (2) into the preceding expession yields
the vibration equation

iM1{q}+ [Kl{q}= 0 (3)
Assuming that simple harmonic motion takes place, equation (3) can be
written in the form 2

[K]{q}= w® Ml1{q} 4)

where w denotes the natural frequency and [K] and [M] are the stiffness and
mass matrices which result from a finite element formulation.

Finite Element Matrix Equation for Shell

The shell is discretized as shown in Fig. 1, and a typical conical
element is shown in Fig. 2. The generalized displacements assumed for a
nodal circle are the three orthogonal displacements and one rotation of
the normal to the shell middle surface about the circumferential direction.
The conical shell element has two nodal circles and therefore eight
generalized displacements which are expressed, for the n th harmonic, as
{q,} in local coordinates and as {q } in global coordinates. The q's are
related by the transformation equat%on as follows:

{a;} = 1M {a) (5)

The meridional dependence of the displacement field is approximated by
the following shape function for the conical element.

= +
Un (sl t) alu azns

Vn (sl t) 0.3n + a4ns

(6)

2
+ + 5
wn (s, t) %5n + Gen® ®9n° %n

Note the foregoing polynomials allow the displacements and rotation contin-
uity at the two nodal circles. Upon evaluating equation (6) at the two nod
nodal circles, yields

{q } = [L] (o} )
Eliminating {q.} from equations (5) and (7) gives

fa} = (LI7" (] {q,} = [1] {q.} @)
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Using equations (9) and (10) and eliminating {a_} with the aid of equation
(8) gives the strain energy expression, for the nth harmonic, as

Va =%{qe]T[TJT (0 (7T {q.} (11)
where
= [IM) + {IF) (12)
and
M L MT M M
(1) =hHf [s7) [¢7) [§] rds (13)
(]
F L FrT F._F
(rij = hHI (5] [ )J[S ) rds (14)
o]

Referring to Fig. 2, thé following relation is obtained to relate the vari-
ables 4 and s in the integrals.

r, -r
-l 1 - 2
T L s + Ty L8 + T, (15)

The integrations, in equations (13) and (14), are evaluated numerically in
the computer program using a ten-point Gauss quadrature integration procedure.
Comparing equations (11) with (2) yields the element stiffness matrix

in global coordinates as T
(K1 =\ (T1" [1].(T] (16)
wvhere [Ke] is symmetric becauseé [¢] and [¢ ] are symmetric.

The mass matrix is obtained by a similar procedure.

The kinetic energy, and the potential energy, for the entire shell can
be expressed as summations of the respective quantities over all the conical
elements composing the shell. Thus the mass matrix, and the stiffness ma-
trix for the entire shell may be assembled from the element matrices.

The modes and frequencies of the shell of revolution can now be sclved

by substituting the mass and the stiffness matrices in equation (4) and ‘
solving for the eigenvalues and eigenvectors of the resulting matrix equation.

1237



Equations of .Motion with Support Displacement Excitation

The finite element matrix equation of motion for a shell of revolution
which includes viscous damping forces is given by

MI{q} + [c]{q} + [K]{x} = {P(t)}
The matrix [C] is a viscous damping matrix which is assumed to be proportional
to the mass and stiffness matrix

[c] = a[M] + BI[K]

The external forcing vector {P(t)} is assumed to be zero for the ground
motion displacement loading. An equivalent forcing vector {P(t)} will be subse-
quently derived for determining the response of the shell to ground motion excita-
tion. The equations of motion for the shell subject to support excitation are

derived in a manner similar to reference (‘ ). The totaldisplacement vector {q}
can be partitioned into boundary displaceuwents {q} and the displacement of the

other nodes {q}c ) {-95} (19)

, The total displacements of thenodes are the quasi-static displacement {q }
and the dynamic displacements {q}. 1In partitioned form this can be written

as

17

(18)

q, 9 . 20
{-5} = (31 + {.gﬁ} (20)
qa, a q

Substitution of equation (20) into the equations of motion yields

M ¢ G % k: 5% 9
.....] {.:..} + ["E""'] {..5.} + 5202201 {25} = {0} 2D

C ®
Mb b G c: bb K> K} Kb a

where [ b], [c ] and [ ] denote forces at the support modes due to unit
accelerations, veloc1t1es and displacement at the support nodes. The matrices
[Kb]’ [C } and [Mb] are coupling matrices between the support nodes and the
non-support nodes. The [K], [C] and [M] represent the stiffness, damping,

and mass matrices of all non-support nodes.

Using the quasi-static equilibrium equation

(x}q,} + K e } = (22)

one obtains

M{q} + [c1{q} + K1{q} = (P} (23)

where . q . q
{e} = - [M:Mb]{'lg'} - [C;Cb]{':E'}
R s 9

since the démping forces are generally considerably smaller than the inertia
terms " the effective force vector is given by

@ = 087K, M) (6 or (B} - (MG (24)

'eifective mass [M] is defined by

DMk -, ) (25)
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Assuming that the horizontal ground acceleration excitation shape Y _(t)
and the propagating wave speed is known, the value of the base acceleration
as a function of time and circumferential angle 8 can be determined. The
base acceleration components in global coordinates can then be expanded in
terms of Fourier components

N
ql =0 | -qz = 51 an(t) sin né
N o (26)
§3 =3 bn(t) cos nb q4 =0

n=0

Once a_(t) and b_(t) are determined, the effective force { P}® is known for
each Fourier componenet. The equations of motion for each Fourier component

is given by —
MY + [Nt = KNG = (7 2n

n The standard normal mode analysis is used to solve equation (27) for
{q} . Superposition of the displacement modes for a particular Fourier com-
ponent given by the equation (27) and then the superposition displacement
modes of all the Fourier components will finally give the dynamic response
of the cooloing tower. These calculations are still in progress and results
will be reported at the conference.

Conclusions

The method presented in this paper can be used to solve any shell of
revolution structure subjected to ground motion. Although final numerical
results are not available, preliminary results indicate that the cooling
tower dynamic response to a traveling wave is quite different than a stand-
ing wave excitation. A parametric study of the effect of different wave
shapes and wave velocities will be presented at the conference.
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Figure 1
Discretized Shell of Revolution
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