DYNAMIC ANALYSIS OF CYLINDRICAL SHELLS CONTAINING LIQUID
SUKENOBU TANI ", YASUO TANAKA”, NAOHITO HORI™
SYNOPSIS

The free oscillations of thin cantilever cylindrical shells partially
filled with liquid are studied. The shells considered are comparatively
long and the assumed displacement functions are of beam type mode in long=-
itudinal direction., Donnell’s equilibrium equations are used. The eguatio-
ns for the natural frequencies are derived from the variational equation
by the Rayleigh-Ritz method and the effect of the internal liquid on the
shell mode shapes is considered by the added hydrodynamic mass. The resul-
ts of some computations are presented.

GLOSSARY OF TERMS

radius of the shell

a =

u,v,w = shell displacements u,v,w, nondimensionalized by the radius a

Fn(X) = nth axial mode shape of an empty shell fp(x), nondimensionaliz=
ed by the radius a

H = h/a, nondimensional liquid depth

Hg = hg/a, nondimensional thickness of shell

L = 1/a, nondimensional length of shell

B = modulus of elasticity

P, = pp/E, nondimensional pressure loading on shell

P = mass density of liquid

Ps = ma.;s density of shell

B = Ra/Pghg, density parameter

n2 = designated frequency, nondimensionalized by Q;U_z_}?ﬁa_@_

T = wt, nondimensional time

X,8,R = cylindrical coordinates, origin at the bottom center., X and R

are nondimensionalized by a
1. INTRODUCTION

The interaction of liquid and the elastic containers plays an import-
ant role in the dynamic response under earthguake excitations. In general,
since the frequencies of the first few dominant modes of sloshing liquid
are usually much smaller than the coupled natural frequency, the shell has
been assumed as rigid. However in the case of comparatively long cylindri-
cal shells or in the case of nonlinear problems, the containers must be
considered as thin elastic shells which interact with liquid. In this int=-
eraction problem many theories have been studied through the breathing
vibration analysis for the fuel tanks of rockets. Lindholm et al. reported
the distortion of axial patterns from empty shell modes for various liguid
-shell height ratio in the experiment?’ Keeping in mind this distortion,
Leory has presented that the displacements of shells partially filled with
licuid as linear combinations of all the natural modes for empty shells
are in good agreement with the experiment“.’ However, as these investigatio-
ns were related with the subjects of fuel tanks, the boundary conditions
were considered as freely supported ends and breathing vibrations at high
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frequencies were considered. Among others, Baron et al. presented the eq-
uations of vibrations for free-simple supported shells partially filled
with liquid by use of Lagrange ’s equation? Arya et al. studied the coup-
led system for free-fixed cylindrical shells by the approximate applicati-
on of additional virtual mass given by Baron et al®

The purpose of this paper is to present the coupling phenomena of
shells and liquid. Displacements for the axial displacement mode are assu-
med as the same for cantilever beams, The accurate potential theory which
is compatible with wetted surface condition of free-fixed shells, are used
to obtain the additional liquid mass for the system. Taking into consider-
ation these, a variational equation which yields freguency equations is
used and the distortions of axial displacement modes from empty shell mod-
es are discussed, Since linear shell theories and linear potential flow
theories are assumed in this paper, nonlinear effects are neglected and
shells are assumed as comparatively long.

2. NATURAL FREQUENCIES
For containers, thin cylindrical shells are considered and the follo-

wing dynamic equations are derived by adding the inertia force to the Don-
nell’s equilibrium equations.

2
= L11U + LoV + L13W - n2%—ug =0 (1.a)
Fo = LpqU + LooV + LpzW - n2ar (1.b)
2g (_-_1)_2)
F3 = L31U + L32V + L}BW - N P
where

2 -
I11= oc¢ . (=) 2 , L12_)) (1 V)32 _ , L15=))__a__
X 2 :2 }Eﬁgé 6 2 B X

o= yAes HIs L0 Lzz- s L23=

i = = 35 S, T

U=u/a, V=v/a, W=w/a, X'=x/ay R::r/a., Hs=hg/a, Pr=py/E, T=wt, /“=H52/12

0=/ (Pobs), N2=(12)a%2pe/5, V= B 4oy + B
The above equations are nondimensionalized. U,V,W(positive outward) are
the displacements in the cylindrical coordinates X(positive upward),e,R
respectively and the shell model used in this paper is illustrated in Fig.
13 t is the time; hg g are the thickness and density of the shell, respec-
tively; E, are the modulus of elasticity and Poisson’s ratio; a is the ra-
dius of the middle surface of the shellj Py is the nondimensional hydrody-
namic loading which appears only in the radial equilibrium eguation becau-
se of the assumptions of neglecting the viscousity of liquid and consider-

ing the lateral vibrations of shells, This pressure will be derived later
by using additional liquid mass Mpnn as follows:

ﬁlié_gP S EEOEAMy 4 Prd X)cos (me ) Wnn (2)

If the boundary conditions for the shell are assumed free-fixed ends
and the shell is comparatively long, the following conditions are obtained

U=V =a3\; =M 9 at X=0 (3.a)
Ny=N. x 5% = =0 at X=L , (3.b)

where Ny,Ny , ayre stress resultants and nondimensionalized by'($§§27 H
L is nondimensional height of the shell.,
If the condition pula/m212¢1 by Yu are assumed, the empty shell oscill-

1230



ates in cantilever beam modes in longitudinal direction, so that the displ=
acements for the shell satisfying (3.a),(3.b) and partially filled with li-
quid are represented by the linear combinations of the empty shell modes as

follows assuming simple harmonic motion:

(X465 70)=4 T ()P (X )cos (m0 =R UmnFn (X )cos(m6 Jeos(T) (4.2)
V(X0 T)=L] Vo (T)Fn(X)sin(mg )=L| VunFn (X)sin(me )cos(T) (4.b)
W(X,04 ©)=LL ¥ (0)Fn(X)ces (me )=L [WymFp (X)cos(me Jcos(T) (4.c)

wh
eran(X)=cosh(I§1aX)-cos(nna)()-kn(sinh('ﬁnax)-sin('ﬁnax) ), Fﬁ(X):-H%@
kn(X)=cosh(Tinl )+cos (Anl )/ (sinh (Tl )+sin(Tnl))
the values of n 1 are given by cos(T,1 )cosh(m,l )==1, whose roots are

ﬁn1=1,8751,4,6941,7.8548,10.99‘5,14.137,17.279.20.420,23.562,""'

To derive the frequency equations, variational equations which obtain-
ed by integrations of the equations of motion with respect to time, circum-
ferential and axial coordinatea are used:

rﬁ( F18U + FoSV + F36W )dXdedt = 0 {6)

vhere U, V, W are the variations of the displecement equations (4.a),(4.b)
(4.c). Substituting the assumed displacement functions and their variations
and integrating with respect to X and 0, the following equatiéns are obta~

ined, [(-K%H‘y;{ﬁ + %2)%:1’ + (-uﬁ*ﬂmKd)er{ + (=VKp )Wnrt _;)_ZUmi] §Unrf +
+{ (O i1, 0t + (02~ C5 2 PRt Vgt + iy = O] 6 +
2
Vgt + g + (14 S5ttt Pt ] s -

502 e zvxmﬁn)wmnr}swmf =0 (¥2n; =1 to N)  (7)
where K a, Hm’ﬂ:f}’n,(x)F;:(X)dX/ L‘(Fd(x)gdx,

r LB (mge)™ o= KXWt () i

Since the variations Uppn,Vpn,Wnn, are arbitrary, the equations in the brace
es must be zero indivisually, so that the homogeneous, linear frequency
equations are obtained, These equations can be expressed in the following

matrix form.

[41] B1I[C1]| {Umn} [T1 0] [o] [{Ymn}
[22] Bo][Co]| A{Vamlt - 2% |[0T [X] [0]|4(Vmm}t = © (8)
[43] Bs][cs]] |{¥mnl] (01 [°] [™] |{¥m]

If shell’s displacements are considered in N terms of empty shell modes,
the coefficients matrix of the unknown Upn,Vpn,Wmn, are 3N x 3N matrix ;¢
indivisually and each submatrix are given by(7):directly.The first coeffic-
ent matrix of equation (8) is obtained from the corresponding static eqtlj.-
librium equations and the second coefficent matrix is obtained from the in=-
ertia forces. The additional liquid mass given by liquid pressure is consi-
dered in matrix Mz which contains nondiagonal elements. Finally the equa-
tion (7) can be written in the following equation.

€] -n2 M]-(@&) =o (9)
This is the frequency equation of the coupling motion of shells ‘a.nd contai-
ned licuid, Substituting the displacement eguations (3),we obtain the .
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vibration modes.
3. GENERALIZED ADDED MASS OF LIQUID

The fluid is assumed to be nonviscous, irrotational and incompressib-
le,The velocity potential corresponding to the mn~th component of shell mo-
tion.must satisfy the Laplace equation,

VBmn = (/32 + 3/x8r +82/:28 0%+ 3Z/3x2 Pup=0 (10)
Three of the boundary conditions associated with this element are

8% mn/dr=dknn/dt=Lp (x)cos (m8 )dWomn/8t at r=a (11.a)

dP mri/9x=0 at x=0 (11.b)

92@ mn/ 9t2+8 3f mn/3%=0 at x=h (11.¢)

where g is acceleration of gravity. The solution of equation (10) are sepa=
ratéd into the particular solution@p, which satisfies the nonhomogeneous
boundary condition (11.,a), and the complementary solution #., which satisf=-
ies homogeneous boundary condition on the wetted surface which is the same
for rigid containers.,

PFun=Pp +¢c=§1>kn(t)Im(knr/h)cos(kTLx/h)cos(me) -
‘ -ggkg o n(t)Jm(x,gr/a)coshomx/a)cos(m’e) (12)

where I (kXr/h),Jy(\.x/a) are modified and unmodified Bessel functions of
the first kind, mspeétively;lm- is j-th root of the equation Jxlxr(?\n(j )=0.
The general solution of this equg.tion hds been given by Chu$™

Pmn g)lm&ﬂ%cos kxx/h)cos(m8)(adWopn/dt )~ ’ (13)
whore R aZ- gl Co Rtk 51 0 njz/a )cosh k pyx/2 )eos (nd) (HEOH)

LY = Ig(E1Q)

Dyn 5{p(x)cos(klx/h)dxmzm s Rpk (m
Ekd=5 T ) & diE) (3>); =2/ (3=0 ,k>0)j =0 (j=0,k=0)
Ey=kra/h,  y2mi=&, Jtanh(kmjh/a)/a

wherew : is j=th natural frequency of cos(m6) mode of }iquid. Here the di-

m
mensionaiized equation(4.d) which is the displacement function of the cant-

The linearlized liquid pressure which corresponds to mn-th displacem=-
ent mode is given by Bernoulli equation,

Py = =, 3%mn at r=a (14)

Generalizing the pressure loading ppn in the longitudinal direction -with
the weighting function fp(x), the equivalent added mass My, are calculated
from the follgwing equation,
’ d

o = SEPRE < - i, S )
where has the same form as the Chu et al.’s equation except the inte-
grations with the dimensionalized function (4.d)., (see eql8of ref5) From
this general mass ,the liquid pressure p, can be calculated as follows:

Pr =11} P} )T f20” Vi Fre(X Jeos (w0) (16)
load in the equation (1.c) takes the following form,
=BT BF, ()08 (10) iun (17)
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Since the particular solution ¢y of the potential ¢mn are sought in the
form cos(kmx/h), orthogonal property is not satisfied, so that the additi=
onal mass My matrix becomes the nondiagonal matrix and the influence of
internal liquid to the shell modes are observed.

4. NUMERICAL RESULTS AND DISCUSSION

At first to check the accuracy of the present method the frequencies
of an empty shell, wz%zh has_the values a/h=173, 1/a=4.38, V=0,3, E=T.,2x105
kg/cm?, Pg=8.,1633x10=0kg.sec2/cm4, are compared with Weingarten’s results
for various values of the circumferential and the longitudinal wave numbers
m and n, Fig.2 shows that the solutions by Donnell’s method give good agre~
ement with the Weingarten’s results. Fig.3 and Fig.4 show frequency=-depth
curves for the same shell used above, Both figures show that the frequenci-
es decrease monotonically with increasing liquid depth. In Fig.3 and Table,
1, the comparisons of the present results with those by Arya’s methed, in
which the virtual liquid mass is derived for a hinged-free cylinder and the
displacement functions of the coupled system are assumed as the same for a
empty cylinder, is shown, The difference of the two results are seen and
the former and the latter results show the tendencies of flexural and shear
types, respectively. The influence of the assumed displacement functions
for the shell partially filled with liquid is shown by curves of n:ix1 and
8x8 matrix in Fig.% and Fig.4 respectively, where the circumferential wave
number m=3 is taken. In the case of the first longitudinal mode i.e. n=1,
the frequency-depth curves show no difference between n:1x1 and 8x8 matrix,
In other words, the displacement mode of a shell is as the same as for an
empty shell, This fact is also explained in Fig.5-a, where the influence of
internal liquid to the shell mode is little except the shell almost filled
with liquid, In the case of the second longitudinal mode, n=2, the frequen=-
cy~depth curvespossesses a kink induced by the distortion of the axial pat-
tern from the empty shell mode., This tendency is also shown in the result
by Chu for simply supported shells. In Fig.5~b,5-c the distortions of axial
patterns from empty shell mode are shown for various liquid depth, where
longitudinal wave numbers are taken as n=2 and n=3 respectively. In both
cases the influences of liquid to shell mode are observed, but clear relat=-
ions between liquid depth and shell modes are not observed from these exam-
ples.

5. CONCLUSIONS

For cantilever shells partially filled with liquid, the influences of
distortions of axial patterns from empty shell modes are discussed in the
frequency-depth relation and in the shell modes in coupled motion with con=-
tained liquid by obtaining the added mass of liquid applying the linear
combination of natural modes for empty shells, As the result the following
conclusions are obtained. The influence of internal liquid to shell mode is
little for mode, n=1, but for modes, n>1, those for empty shells can not
represent the modes of shells partially filled with liquid.
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