OPTIMUM TUNING OF THE DYNAMIC DAMPER TO CONTROL RESPONSE
OF STRUCTURES TO EARTHQUAKE GROUND MOTION
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SYNOPSIS

A method is presented for tuning the dynamic damper so that the mean
square acceleration of the anti-earthquake structure to which the damper
is attached can be made minimum. The acceleration power spectral density
of earthquake ground motion at the base under the ground layer is assumed
to be constant for a certain frequency range. The natural frequency and
the damping of the dynamic damper which give optimum tuning are shown in
the form of chart.

INTRODUCTION

The dynamic damper or the dynamic vibration absorber is an effective
means to control mechanical vibrations, and the method of tuning it is
treated in most text-books of mechanical vibration. It can also be used
to control structural vibrations induced by earthquake ground motion. When
it is used to this end, however, the optimum tuning condition will be more
or less different from that written in the text-~books because the spectral
density of earthquake ground motion needs to be taken into account in this
case. This paper discusses the method to tune the dynamic damper so that
it ‘can minimize the mean square acceleration of the structure excited by the
earthquake ground motion. The maximum acceleration of the structure which
is of primary concern in designing anti-earthquake structures will be made
minimum by making the mean square acceleration minimum.

BASIC IDEA OF OPTIMUM TUNING

The vibrating system to be discussed in this paper is shown in Fig.l,
where the structure whose vibrations are to be controlled is represented
by an undamped single degree of freedom system. In Fig.l, m; is the mass
of the structure, k; is the stiffness of the members which prestrain the
mass, my is the mass of the dynamic damper, ¢ is the damping coefficient,
k, is the stiffness, z(t) is the absolute displacement of the ground surface,
x 1(t) is the displacement of the mass m; relative to the ground surface, and
%, (t) is the displacement of the mass m, relative to the mass m,.

Let P(w) be the acceleration power spectral density at the base, F(jw)
be the complex frequency response of acceleration from the base to the
ground surface, and G(jw) be the complex frequency response of acceleration
from the ground surface to the structure. Then the acceleration power
spectral density of the structure is given by |G(jw)|?|F(jw)|?P(w), and
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the mean square acceleration of the structure is given by
%,(1)2 = g”le(jm)li’-lr(ju)lzp(m)dm (1)

It will be reasonable to assume that P(w)=P; for wiswsw, and P(w)=0 for w<w;
or wp<w. Eq.(1l) will become

21(t)?% = Py £ﬁ2[G(jw)[2|F(jw)|2dw (2)

Then the problem is to find the integrand |G(jw)|2|F(jw)|? which gives minimum
integral #;(t)2.

When the transmissibility ]G(jm)l of the two degree of freedom system is
plotted with w taken as abscissa, all curves of IF(jw)l pass through two fixed
points whatever the damping may be. Since the transmissibility IF(jw)l is
independent of the system parameters which govern lG(jw)[, all curves of the
integrand |G(jw)|2|F(jw)|? also intersect at two fixed points. If the mass
m, and the stiffness k, are chosen so that the ordinates of these two points
~ will be made equal and, further, if the damping coefficient c is selected so
' that the integrand |G(jw)|2|F(jw)|? will take the maximum at these two points,
the integrand IG(jm)lzTF(jm)!2 will be made as samll as possible. It is
mathematically not exact to consider that this as small as possible .inte-
grand gives minimum integral, but the integral given by this integrand will
be very near the minimum. This is the basic idea of optimum tuning.

DERIVATION OF OPTIMUM TUNING CONDITION

Equations of motion of the two degree of freedom system shown in Fig.l
are

my(Z+% 1) + kix; - C}‘(z - koxy = 0 (3)
m2(2+ii 1+512) + C)'{z + koxo = 0

Let X1(s), X,(s) and Z(s) be Laplace transforms of X 3j(t), x,(t) and z(t).
Then Eqs(3) become
(m152+k 1)X 1(3) - (CS+k2)X2(S)
mys2X 1(s) + (mps?+cstky)Xp(s)

- ms22(s)
- szZZ(S)

(u)

"

The acceleration transfer function from the ground surface to the structure
is obtained from Eqs(4) as '

L 3 2
G(s)=- mmys t+(m p+my Jes +(m j+mo ) ko s (s

m ymos*+(m prmy ) es 3+ (mpk hm ko tmoks )sZ+k jestk ko

Substituting s=jw (j=v/:_3—.), wg1=vk y/m1,wp2=vYko/my, V=wga/Wg 1,R=m2/m 1s
r=c/2Vmoks and »w/wg; into Eq.(5) gives the acceleration transmissibility

6CGiw)| =g(V=r {(L4R)V2A2- 212 +{20 (14R)v A3} 2 11 /2

X (6)
{ A*=2Z(1+R)VZA2+v2}2+{2zvA(1-(1+R) A2 ) }2
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The dimensionless frequencies for which all g( )) curves intersect are given
by equating the transmissibilities Eq.(6) for two extreme cases,;=0 and
g==, Then

(1+R)vZ2A2-4 o (1+R)vA3 7
Mo A2-(14R)v2 A2+02 vA{1-(1+R) A2}

Eq.(7) becomes
2(1+R) M ~ {2(1+R)2v2+(2+4R) A2 + 2(1+R)v? = 0 (8)
Eq.(8) has two positive roots, ),2 and Xq?, whi¢h give the abscissas at which

all g(A) curves intersect. It is seen from Eq.(8) that the roots depend only
on the mass ratio R and the natural frequency ratio v.

When the ground layer has single predominant period of ground motion,
the acceleration transmissibility |F(30)| is written as

PG| = (——2tZRw)® 3172
(pz—m2)2+(2hpw)2

(s)

where 27/p is the predominant period and h is the damping ratio of the ground
layer. Substituting M»w/wy, and p=p/wyiinto Eq.(9) gives

p*+(2hp 1)2 ]1/2
(p2-22)2+(2hp 1)2

|F(Gw)| = £(0) = [ (10)

To find the natural frequency ratio y for which the ordinates of the inter-
section points become equal, it is more convenient to substitute ;=0 into
Eq.(6) because the ordinates of the intersection points are independent

of z. Then

2 2
(AR epy)2 = (o HRIAGC gy )32 (11)
l—(l+R) APZ 1-(1+R) }\Q2

g
By substituting Eq.(10) into Eq.(11l) and making use of the relation between
the coefficients and the rcots of Eq.(6), Eq.(11l) becomes

agv® + azvt* + ayv? + ag = 0 , (12)

where ajvag are all polynomial expressions of R, p and h. Eq.(12) has a
single positive root, and for this v the ordinates of the intersection
points are made equal. In Fig.2 the natural frequency ratio vy thus obtained
is plotted with p taken as abscissa, and R as the parameter.

_Next step is to find out ¢ for which the integrand |G(jw)|2|F(juw)|2
takes the maximum at and AQ- This is done simply by equating the
erivative of the intigrand with ) to zero

g(N2E(X)21/81 = 0 (13)

(14)




where byvby, are all polinomial expressions of A, p and v. Two gs, Cp for A
and g for AqQ, are obtained from Eq.(14). As these s are not much different
to each other, the average of these will give a damping near the optimum.

The arithmetic average is shown in Fig.3 with p taken as abscissa, and R

as the parameter.

It is important to check the magnitude of the force which results from
the relative motion between the structure and the dynamic damper. Too large
- force will break the structure, though the damper itself does not necessarily
need to survive the earthquake. The transfer function from the ground accel-
eration to the force between the structure and the dynamic damper is given by

k j(es+k
H(s) = Lostka)Xp(s) _ _ mpk j(estky) . (15)
s?Z(s) mymps'*+(my+my Jes 3+ (mpk+m gkptmyky Js24k jesthk gk g

Then the transmissibility is

[HGGw)| = mph(x) = myl
{2 2o (14R)VZ A24+02 324 {20vAa(1-(L+R) A2)}2

The mean square damping force is thus expressed as
(ckptioxp)?= o [(2|H(J0)]?|F(ju) | *dw (17)

If a single dynamic damper is replaced by smaller ones of which the total
effect is equivalent to that of a single one, the damping force which each
smaller damper applies to the structure can be decreased.

TUNING PROCEDURE

A dynamic damper is designed in the following way by making use of Figs
2 and 3. The natural frequency of the structure wg and the predominant period
of ground motion 27/p have to be known first. The frequency ratio p is then
determined by them. If the mass ratio R is given by design considerations,
the natural frequency ratio v and the damping ratio ¢ are given by Figs 2 and
3. Although it does not seem easy to make an exact estimation of the equiva-
lent mass of the structure, a misestimation will not much affect the result
cbtained as easily seen from the figures. The dynamic damper shown in Fig.l
takes the form of a mass-damper-spring system for the convenience of discus-
sion, but it will be understood that the dynamic damper in any other forms
can be used to control structural vibrations.
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‘a1n Fig.2 and 3, h is the damping ratig of the ground
T, R=my/mj and p=p/wg ), where wgyj=rkj/m; and
is the predominant period of the ground motion
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