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SYNOPSTS

The investigation presented in the paper makes an experimental study
on the damping pattern of building models during free viltrations and forced
vibrations and an analytical study on a flexible mathematical method for
incorporating any chosen intermodal damping in response analysis. A case
study by computer calculations regarding the influsnce of damping matrix on
the response of multistoreyed buildings with and without joint rotations,
on rigid and on flexible foundations is also done.

INTRODUCTION

The response farces of a building subject to an earthquake are contre—
1led by its damping. While it is possible to systematically determine the
inertia and stiffness propertiss of a building, it is not possible to so
define damping. It is usual to define damping by an equivalent viscous
damping coefficient for each narmal mode. The response values are highly
sensitive to damping and hence the damping values ought to be very ofre-
fully chosen in order to obtain meaningful response values. An approximate
damping idealisation would be inmcongruous with the present day sophistica-
ted techniques of response analysis, In crder that the well known equation

of motion, M +C%+Kx == M ‘2" e.o(1), ©@n be uncoupled far

solution, the damping metrix should be defined such that it has erthogonal
properties. This can be achieved in many ways such as the adoption of
‘mass proportional?!, !stiffness proportional?!, ‘mass cum stiffness propor-
tional' or 'equal interflocr® damping definitioms oxr to adopt Caugheys
squation. While The Caughey series method involves in serious computation-
1l errors, the mass cum stiffness damping matrix tends to give moderated
*esponse envelopes close to equal intermodal damping [1] . Experimemtal
ind test results reported in literature (e.g. vide Ref. 2,4,5)indicate

that the coefficient of eritical damping of buildings is sensitive to the
wmplitude of vibration and the matural frequencies of the modes. While
shere is general consistency in the reparts that damping increases with

she force level and the amplitude, results are not conclusive regarding its
wttern of dependence on the intermodal natural frequencies. The reports
;hat damping ratios consistently increase with farce levels suggest that

lamping would be egreatu' for wind and earthquake induced motions than for
mbient and forced vibrations with low force levels realised during tests

Experiments were conducted in the present work on building models of
teel for a study of damping patterns. The 5C frame of Housner and Brady
[3] which is a five stareyed steel building shear frame was chosen and
- 8ingle bay was idealised as & building with floor dimensions 6,096 m x
096 m on for colums. Adopting a scale factor of 20, the dymamic scale
wdel had its properties: 753.6, 645.9, 538.3, 430.8 and 323.0 Kg/om far
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stiffness of each colum in storey 1,2,3,4 and 5 respectively and mass of
each floor 0.0023108 kgsec?/cme Mode models of the building were idealised

to have an effective mss (M) and effective stiffness (K,) for each mods,
VRETe o= (AT M)/ (4T M) and By = pPa, eee(2,3). A is the vecter

of mode shape and p the matural frequency of the mode. Apert from the
above set of mode models which carresponded to the idealisation of the
building as & ghear frams, a second set of mode models for the first fomr
modes of the building model taking into acecount the joint rotations of the
actual steel beam sections used was also fabricated. The building model
and & set of mode models are indieated in Figele. The models were subject
to nearly simisoidal lateral excitetions in a vibration bed excited by an
unbalanced double mass exciter whose force level could be regulated. The
response displacements of the models were picked up at the floor levels by
LVDT pick ups and recorded in 5 channels of a Phillips Oszilloscript. The
firat set of models were excited with a force level corresponding to sett-
ing 10/10 of the exciter which was double the farce level of the setting
5/5 used to excite the second set of models. The displacement response vs.
foreing frequency curves are given in Figs.2 and 3, The coefficlent of
critical damping,'zeta’, (3) for all the mode models (denoted by ESDS 1-4
for set I and ESDS i1R-4R for set II) and the building model was analysed by
the method of "logarithmic decrement® and also by the method of "band width
between half power points® and the results have been plotted in Fig.5 to a
logarithmic scale. The corresponding amplitudes have also been plotted to
a normal vertical scale with thelr origins on the respective zeta values.
The gzeta values of all the models by free vibration lies between .14 and
1.1% (average value: 0.45%) and by farced vibration, between 1.3% and 22,8%
(average value: 7.02%). Considering farced vibrations alone, the average
seta values for set I and set II experiments are 12.94% and 2.58% respect-
ively. The carresponding average values of amplitudes are 1.28 mm and
0,602 mms It is observed thet the forced vibratlon values of zeta are far
in excess of free vibration values and that zeta is influenced by the
amplitude of vibtration and the force lwel. The base shear of a building
is a good indication of the response forces and displacements resulting
from the input energy of the forcing function and consequently the ESDS
force(equivalent single degree structure force) itself and in turn, the
absolute acceleration of the ESDS emerges as a parameter controlling the
variation of zeta during farced vilrations.

NUMERICAL INTEGRATION FOR VARIABLE DAMPING
The value of zeta (’fr) at the commencement of excitation and the

upper limt (2p,¢) When the absolute acceleration reaches a specified

value (f) are assessed and utilised in the numerical integration procedure
instead of adopting the usual constant zeta value throughout the time
history. During each time step seta value is interpolated by the rule

3= 5o+ (’fce - S, ) 8, /£ .ee(4), where a, is the absolute acceleratior
pertaining to the time step. When equal intermodal damping is desired,
seta value for mode-1 is calculated by Eqn.(4) and this value adopted far
all the modes. For the development of the procedure and for case study,
the Wilson-Clough method of mumberical integretion with constant damping
matrix (vide reference 1) was adopted. The response acceleration in this

method is of the form

K] -] ) 2
xX=F R ¢se(5), vhere F is a square matrix = M+ db C + (géc._) K
- — - - 2 =y -

‘apd R is a column vector dependent on the known velocities and acceleretion
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of the previous time step (t) end the ground acceleration of the present
gtep (t + dt). With s constaut damping metrix, ¥ need be inversed only
once at the beginning of the proceduwre but with veriable damping F ghould
be inversed at every time step which results in uneconomical computer
effort. This disadvantage is overcoms in the present work by making use
of effective mass (M) , effective damping (C,) end effective stiffness (Ke)
mitrices which are all diagonal metrices. The damping metrix elements Cg

take the values: 28 M, p of the corresponding modes. In this procedure the
matrix F in Eqn.(5) is disgonal and its imversion is simple and is achieved
T anaimine reciorocal wvalves 4o the diasonsl elements. The response
vaines of displaceuents, veloclilecs apd eoesisrations w buis webhod wiil

be that of the BESD atructwmres (35@ , 5@ -&? e These are converted to the

response of the real structure ( o . o Of the mass &t level 'i') by
Xy 9 X35 X3

the relationship:

(xy / Xg) = (ii / ie) = ('xj’i+ °f) / (‘x'e+ %) = (4 / Rg) eoe{6) where

A; is the mode shape vector at level 'i' and R, is the radius of particips-

tion of the mode, taking the value: (T M 8)/ (6T 34 1) +++(7). The msthod
was compared with the standard procedure of Wilson and Clough which adopts
the regular mess, demping and stiffness metrices, by response anslysis of
Housner and Brady's 5A frems with joint rotation and 5C shear frame (3]
subject to Koyna T. E.Q. with a mumber of combinations of zero damping
'mass proportional?, 'stiffness propartional'! and 'mass cum stiffness pro-
portional® damping. Analysis was also done with soil interaction for the
5C frame but with sero damping for comparison of the methods. The zeta
values adopted were ,025 in the fundamental mode for the mass proportional
and stiffness proportional demping and o025 in the first and secomd modes
for the mass cum stiffness proportional damping matrix. The carresponding
intermodal damping values are: mass proportional, frame Sk, zeta (1) 025
(2) 00815 (3) ,00452 (4) 00301 (5) 0.00221; frame 5C, zeta (1) 025 ()
0.00957 (3) 0,00615 (4) 0.00471 (5) .00381; stiffness proportional, frame
54, seta H 6025 (2) +0769 (3) «1383 (4) 2074 (5) . 2634; frame 5C, meta
(1) +025 (2) 0653 (3) .1017 (4) 1325 (5).1642; mass cum stiffness pro-
portional, frame 5A, zeta (1) .025 (2) <025 (3) 0373 (4) 0532 (5) .0712;
frame 5C, zeta (1) 025 (2) 025 (3) 0326 (4) 0401 (5) +04819. There was
exact agreement in the response values by the Wilson-Clough method and the
BSDS method. The computer time required for anslysing structures with more
than six storeys, by the ESDS method is less than that by the Wilsom— Clough
method. As a typical example of the response values by the various damping
assumptions, the first floor maximum absolute acceleration of 5& frame nor-
mlised by dividing by gravitational acceleration, for the Koyna T. E.Q.
with 5% damping are: 1,03748 (no damping) , 0,S0846 (a M ) » = 0.22089(b K)

and 0.32518 (2 M+ b K). With equal intermodal damping of 2.5%, the corres—
ponding value is 0.,46407. The intermodal zeta values reveal that the mass
proportional and stiffness propartionel demping matrices respectively

exphasise and suppress the higher modes. The mass cum stiffness matrix is
an improvement but that also suppresses higher modes to some extent. Equal

intermodal damping regulates evenly the intermodal response comtributioms.
RESPONSE ANALYSIS
Response dependent damping in accardance with Eqn.4 of the patterns
(34.= 0.0, Zp.e - 0s15, zeta increment step, 'sinc' = 0.01, £ = 300) ,
(0402, 042, 0,01, 300) , (0,03, 0.15, 0,01, 300) and (0.05, 0.1, 0,01, 3500)
were adopted to analyse the five storey bullding frams and the Incomstax
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building subject to Hiroo EW, Koym L., &nd Koyna T. earthquakes. The TV
tower was analysed for Hiroo EW E.Q. with the damping pattern (0.002, 0,1206,
o0, 1400,) derived from the experimemtal results of the steel
m-d. u;ﬂ{yg::}ﬁ:oﬁ:: of the mximm response farces and the response
pe ern dur the time hi have been ed in Figs.
:;6 ;:: 7.ttk.oh thuhot atructm‘ ure cad)mm has its owm de i
D patiern even far identical 8. The variable
acts like a centrifugal governor mm w moderates excessive “glq dcﬁ-m
cient displacements during the times histoary. The response values with
response dependent damping are less than that with a constent dampings o
The pattern of interfloor maximm response forces varies from eart )
eart es The floor displacements are somewhat insensitive to
mode contributions over fundamental mode while the response accelerations
and floor forces are quite sensitive, The impertance of the higher mode
contributions depends on the gttern of earthquake and the first mode alome
is a poor representation of the total effects of the storey farces.
CONCLUSIORS

i) Damping during farced vibrations is far in excess of the free vibratiom
value. For mmmerioal integration, a stage by stage alteration of
ing with the increase in absolute response acceleration is rec
and a method far it presemted.

i1) Bqual intermodal damping is an improvemeut .ovexr the mass cum stiffness

proportional damping metrix which suppresses higher modes to some

111) Maximm response values with response-dependent damping are considerably
less than that obtained by a constant damping matrix. Further experi-

mental resseaxrch on the response-dependent damping pattern of structures
is recommended.
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