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SYNOPSIS

Random response of single-degree-of-freedom bilinear hysteretic struc-:
tures are analyzed to furnish useful imformation for aseismic structural
design with emphasis on ductility requirements. Stationary and nonstationary
random excitations with a single peak frequency are employed to clarify the
effects of non~white frequency components of earthquake ground motion. The
response of bilinear structures is predicted by means of equivalent lineari-
zation techniques. Using these results, probability distribution of the maxi-~
mum response is predicted through pure-birth and envelope methods. Monte
Carlo simulation performed on a digital computer verifies applicability of
the analytical methods.
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1. INTRODUCTION

During strong earthquakes, deformation of most structures would exceed
the yield limit. In this sence, numerous studies have been devoted to earth-
quake response analysis of structures with nonlinear hysteretic restoring
.force. In most of these studies, deterministic methods to calculate respo-
nse to certain specified excitations have been used to verify structural
safety against strong ground motions. Some of them deal with nondeterministic
analysis which discusses prediction of root-mean-square (rms) response of
hysteretic structures subjected to stationary white-noise excitation.

For assessing structural reliability during 'earthquakes, it is desirable
to estimate the probability distribution of maximum response of hysteretic
structures, since it represents the load effect beyond the yield limit. It is
also required in simulating future earthquake motions to take account of non-
white property of frequency and nonstationary characteristics of amplitude.

In this study, linearization techniques are adopted to analyze random
inelastic response. First passage problems are discussed to predict the pro-
bability distribution of maximum hysteretic response subjected to stationary
and nonstationary random excitation with a single peak frequency. Monte Carlo
simulation is performed on a digital computer to check the accuracy of the
theoretical analysis.

2. METHOD OF ANALYSIS
2~1 Equivalent Linearization

The equation of motion of single-degree-of-freedom structures with hys-
teretic restoring force q(n, u,u,t) is written as

u(t)+6ou(t)+woq(n Pollyt)= -r w(t)f(mf,hf,t) B ¢ )

whete U(t)= ductility factor response; B, and W.= damping coefficient and

tu;al‘irequency, respectively, in infinitesimal vibration; r = intensity

ameter of excitation; f(wz ,t)= stationary random process of which power
density is defined é; (5); Y(£)= nonstationary envelope function.

c property in Eq.(1l) will be replaced by equivalent linear dam-
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ing coefficient Beq and natural frequency w eq as

H(E) gl HG (D)= b (B f(Wphpt)  ervririeeniinnen(2)

In this study, typical two linearization techniques are employed. One is
the least mean-square error‘methodl) which minimizes the mean~square error
due to linearization, and the other is the energy balance method?) which
equates hysteretic energy to the dissipated energy due to equivalent linear
damping. When slowly varying amplitude and phase angle are assumed for the
response H(Z%), the two methods are found to result in the same expression of
Beq(u°) and weq(uo) as function of response amplitude Y.

2-2 Probability Distribution of Maximum Hysteretic Response

Probability distribution of maximum hysteretic response is discussed
through probabilistic analysis of equivalent linear structures.
Let MYy, denote the maximum absolute value of the response p(t) during earth-~
quake motion, its probability distribution is represented by
(1, ) =Pmax | U(E) | Spgps 0St< 1= ao(umm)exp{-f:co(umax,t)dt}....(3)
where

oy, 0= PLIu0) [< w, ] | (8
Co (Mo VA= PLIUCEHE) [P | max|u(e") <, 5 0t'<t ]
in which P[A] is the probability of event A and P[AlB] is the conditional
probability of event A on the hypothesis of event B. The significance of
. Co(Mpgr»>t) is the rate of the upward crossing of lu(t)l-u under the con-
dition that no such crossing took place in the past response. Because of

difficulties in obtaining the exact solution for co(u ,t), several appro-
ximate methods have been proposed.’

2-3 Monte Carlo Simulation

Monte Carlo simulation is carried out on a digital computer to check
the accuracy of predicted rms and maximum response of hysteretic structures.

Stationary non-white excitation is generated through following proce-
dure. First, band limited white noise is generated by summation of a few
hundreds of sinusoidal time function whose frequency and phaze angle are
random variables with uniform probability densities. Then relative velocity
response of a linear simple structures with parameters of w, and hpr is ob-
. tained; its stationary part is used as the excitation f(%). Hence the power
spectrum density of f(¢) which has the variance of unity is the form, we
have '

Sf(w)= 4hf/~(ﬂwf)-(w/wf) -[{1-(w/wf)2}2+4h Z(w/wf) ] veeesa(5)

Response of hysteretic structures is calculated by the linear acceler-
ation method. The stationary rms response of ductility factor is estimated
as the time average of stationary portion with duration 20 times the natural
period of structures. i

Earthquake-type nonstationary random excitation is generated as the
product of deterministic nonstationary envelope functiom Y(¢) shown in Fig.
6 (a) and the stationary random process f(t). The nonstationary rms response
is estimated as the ensemble average of 50 samples.
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3. STATIONARY RESPONSE TO NON-WHITE RANDOM EXCITATION
3-1 Stationary RMS in Ductility Factor

Stationary rms response Oy of hysteretic structures is predicted by an
iterative method’) which approximately determines the equivalent linear para-
meters weq(au), Beq(cu) and corresponsding rms response cu(meq,Beq).

In this study, bilinear hysteresis loops shown in Fig.l are adopted. A
parameter n expresses the nonlinearity of the second stiffness. Predicted
values of 0., Wy, and B,, for medium-period bilinear structures with W, equal
to Wy (W=wWrfwo=1.0) are shown in Fig.2. The abscissa is the linear rms res-
ponse 07 ih terms of ductility factor. Hemce it is proportional to the exci-
tation level and inversely proportional to the yield level.

Compound effects of w,, and Bgq on the hysteretic rms response Oy will
be clarified from the concept of transition of structural receptance shown
in Fig.4. It is easily understood that the softening spring of the yielding
and its hysteretic damping have different effects on its response depending
on W, relative to wee

It is clear from Fig.3 (a) that the response of short-period bilinear
structures relative to linear response increases with the excitation level
o4 and with increasing nonlinearity n because of the transition of the struc-
tural receptance closer to the peak of the excitation spectrum as shown in
Fig.4. In long-period structures, this transition effects reduces the bi-
linear response relative to linear response as found on Fig.3 (b). This
effect is also shown in Fig.4.

Simulated bilinear rms response is plotted in Figs.2 (a) and 3 (a),(b)
in comparison with predicted values. When nonlinearity is not strong (n=
0.25), both results show satisfactory agreement. Strong nonlinearity (n=
0.75) makes the simulated bilinear response larger than predicted values
presumably due to growth of plastic deformation.

3-2 Probability Distribution of the Maximum Ductility Factor

Probability distribution of maximum bilinear response in stationary
state is predicted by assuming co(lyyp) is approximately equal to the uncon-
ditional crossing rate Nu(umam) of ductility factor response u(t) at the
level of Yy, In calculating N, (Wp,,.), the Gaussian distribution of u(%)
and u(t) is assumed. The duration of stationary response is taken as 20
times the natural period of linear structures.

Fig.5 shows the predicted and simulated results for medium and short-—
period bilinear structures. Agreement is satisfactory for both of linear
structures with relatively large damping factor (%,=0.1). In these cases,
assumtion of Poisson process arrival of ductility factor response to the
level of HWpgr can be used successully. Hysteretic effects decrease the max~-.
imum response of medium-period structures, whereas it increases that of
short period-structures. Difference between the simulated and theoretical
Vvalues increases with the nonlinearity parameter. These properties are

nalmpst consistent with those of rms response discussed in the prev1ous
2ction, :

TIONARY RESPONSE TO EARTHQUAKE-TYPE EXCITATION

:nary Response and Equivalent Linear Structures

nary response of hysteretic structures is predicted by the
e@ method which consits of two procedures. One is nonstationary

i
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random response analysis of equivalent linear structures and the other is
determination of equivalent linear parameters Beq and Wy eq as function of
response level.

Fig.6 shows time. depending mean-square Oz(t) of ductility factor
response and corresponding equivalent linear parameters Wgg and kg, for
short-period bilinear structures. The large value of ou(t) and the time lag
between the peaks of response and the nonstationary envelope function are
found with increasing nonlinearity inspite of larger hysteretic damping heq
This is due to reduction of w,, which makes the receptance function closer
to the peak frequency of the excitation.

Predicted Uﬁ(t) is compared with simulated result in Fig.7. Although
simulated result shows fluctuations presumably due to insufficient sample
size and a little larger value than predicted response which may be attri-
buted to growth of plastic deformation, agreement between the two is fairly
good.

4~2 Probability Distribution of Maximum Ductility Factor

For prediction of the probability distribution of the maximum response
in nonstationary state, co(umax,t) is approximated by the unconditional
crossing rate Ny(Wpgy,t) of response envelope W(t) at the level of lpg.
Is is reported that the assumption of Poisson Process arrival of response
envelope to a level of y,,,. can be used more successfully than that of
ductility response U(t) itself6) .

Predicted and simulated probability distribution of maximum response of
short-period bilinearstructures are shown in Fig.8 and their mean values and
coefficients of variation are compared in Table 1. Both the predicted and
simulated results show larger maximum response for stronger nonlinearity.

It is seen in Table 1 that the nonlinearity of short period bilinear struc-—
tures makes not only mean values but also coefficients of variation larger.
This result suggests that the effect of hysteretic damping should not be
expected in earthquake resistant design of relatively short-period structures.
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Fig.l Bilinear Hysteretic
Restoring Force
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(a)Short-Period Bilinear Structures
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Fig.3 Predicted and Simulated RMS
Response of Bilinear Structures
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O A0 RVET t .o Predicted Simulated ‘
0 ‘ 5 10t Mean Max.|Coef. of [Mean Max.|Coef. of
Fig.7 Predicted and Simulated Regponse | Variation{Response |Variation
Nonstationary response of ﬁigegg g'gé 8‘%3 ';'gg g‘zg
Ductility Factor %=0.75] 12.91 | _ 0.33 12.09 0.52
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