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SYNOPSIS

The cross spectral density function between spatially variant earth-
quake excitations is assumed such that the statistic correlation decreases
in an exponential manner as the distance increases. The system, where a
rigid slab is supported by many columns, bottom ends of which are subjected
to multiple inputs which have the above-mentioned characteristic, is
supposed. Frequency response functions of the absolute acceleration and of
the relative displacement are mathematically derived. Stochastic responses
are analytically evaluated when excitations are band limited white noises
with such spatial variation. Responses due to noises given concretely as
the simulation of typical earthquakes are numerically estimated.

INTRODUCTION

The movement of a ground surface during an earthquake will not be
identical even in the relatively limited plane, but possible to have the
spatial variation. Such seismic waves can be recognized indirectly by the
comparison of an accelerogram recorded in a building foundation with that
obtained simultaheously on a ground surface in its vicinity. Through the
analysis of those observations, the mathematical form of the cross spectral
density function between earthquake motions, where the statistic correlation
decreases in an exponential manner as the distance increases, can be
regarded as the most realistic idealization.l) The purpose of this paper
is to investigate theoretically the stochastic response of the structure
subjected to multiple excitations which have the above-mentioned character-
istic. 1In the earthquake response analysis of the structure, the founda-
tion is usually assumed to translate uniformly. The spatially variant
ground motions, however, should be introduced if the foundation is not rigid
enough, since such variation is possible to have a favorable influence upon
the aseismic design of the structure.

FREQUENCY RESPONSE FUNCTIONS -

Consider an idealized single-story-structure shown in Fig. 1. Mass-
less columns, n in number, which have the same structural properties one
another, are located at equal intervals. A massive rigid slab is mounted
on them. Bottom ends of columns are subjected to mutually correlated
multiple inputs. Dealing only with the horizontal vibration in the longi-
tudinal direction of the structure, this is a single-degree-of-freedom
system with a natural circular frequency, W,. Now supposed that each
foundation has the simultaneous forced displacement, Xj(j=1, 2, *++, n),
the total displacement, Xt, of the slab is equal to the sum of the static
displacement, Xg, which is exactly same as the arithmetical mean of X4 and
the dynamical displacement, X3, governed by the following equation of
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motion, where the viscous damping proportional to kd with a corresponding
damping ratio, h, is assumed.

. . 2 1 .

+ + = - = e 0 B

X3 + 2hwpXg + wp“Xg = ngxj (

If only the j-th foundation is subjected to an unit harmonic accelera-
tion, ﬁj = exp[iwt] where i is an imaginary unit and t is time, then the
frequency response function of it, aHy/ will be given, with B = w/wp, by

AHj = B(B,h)/n, P T I T T R ] ceassvessemamosse (2)

1 + 2hBi
where B(B,h) = . s s e BN e rs s s s R e n A e n. cesesenas (3)
Z 1 - B® + 2hgi
When an unit harmonic displacement, Xj = exp[iwt], is supposed as an input
of the j-th foundation, the frequency response function of the k-th story

displacement, pH4x, is written, with Kronecker delta, §4x, as

Dij=":-TB(B'h) - ij' cesecesnesascarectacacenenaaaccssancnancens (4)

Under the condition of the stationary random process along with the
linear system, the cross spectral density matrix of outputs, S(w), can be
calculated through the frequency response function matrix of the system,
H(w), by the following relationship, when the cross spectral density matrix
of n multiple inputs, G(w), is given.

S(w) = gﬁw)-g}m)-gjw)*T, ceecctcsaeennan N RN {-))

where » and T represent a conjugate complex and transposition of matrix,
respectively. Now the cross spectral density function between the j-th and
the k-th ground motions, ij(w), is assumed asl

ij(m) = exp[—plgjkll-g(w)’ R A R R N € -)

where G(w) is the power spectral density function common to the excitation
of eacn foundation and |&;, | means the distance between the j-th and the
k-th points. p, which represents the degree of correlation, is a non-
negative constant with an unit of reciprocal of length. p = 0 corresponds
to perfect correlation, whereas p = ® to absence of correlation.

Here defining a non-dimensional quantity called "space corxelation
index" as Y = pL, where L is the total length of a structure, the power
spectral density function of the absolute acceleration response, pS(w), is
obtained, substituting Egs. (2) and (6) into (5), as

AS(m) = |AF(nrYIBIh)|2‘AG(U))o saeeecteacascsassssnsecanenenncncen (7)

where ‘AF(nI.YIth)l ’“AR(H:Y)‘IB(B:h)Ir cemesssamecraannnsrasnnnnanns (8)

AR(n,Y) =‘/-:-L- + 2¢7Y/ (1) {n-1- e Y/ (a7D) - gmmY/(n-1)
- o V/eD, /)

A - )|

and AG(m) is the power spectral density function common to the ground acce-
leration of each foundation. If, in particular, n - %, then pR(n,Y) given
by Eq. (9) becomes of much more simple form as

AR(Y) =%J2(3‘Y Y = 1), ceeesececeesacecsccenacsccacacccses (10)

AR(Y) is also equal to the absolute value of the transfer function of the
soil-rigid foundation system without a flexible superstructure.l) The
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relationship between this revised coefficient, aR(n,Y), and the space
correlation index, Y, with the number of columns, n, is displayed in Fig.

2. aR(n,Y) monotonously decreases to the limiting value 1/4yn, as v
increases. Since Y is considered to be less than, say, 3, in general, )
aR(n,Y) does not depend so much upon n, and therefore can be replaced nearly
by aR(Y) given by Eq. (10). In addition to that, when n is greater than
merely 3, aR(n,Y) is almost equivalent to pR(Y) even if Y is rather high.
After all the revised coefficient can be approximated simply by aR(Y)
regardless of the number of columns.

Now introduce a non-dimensional quantity, A, which represents the
horizontal coordinate normalized by L as shown in Fig. 1. A is related to
the column-number as A = (k - 1)/(n - 1). Substituting Egs. (4) and (6)
into (5), the power spectral density function of the k~th story displace-
ment response, pSy(w), then becomes

pSk @ = [pF(n,A,v,8,0) |* -pGw), crereeeeeeenes e (11)

where |pF(n,A,v,8,0)] =1 + aR(n,y)2-|B(B,M) |2 - Q(n,A,7)-Re[B(B,h)],

=Y/ (n-1) =AY ~(1-NY
Q(n,A,y) = 2_+ 2e [ 2 e € ], ceccececees (13)
n l-e

=]

Re[ ] represents the real part of [ ] and pG(w) is the power spectral
density function common to the ground displacement of each foundation. The
value of IDFI slightly changes with a variable n and is almost equivalent
to that when n = ® if n is greater than around 3. Besides the effect of

n when n > 1 is limited mostly to the range of B < 1. If B =0, in
particular, [DF[ rapidly converges, as n increases, to

DR(A,Y) = -%,'\/Z(e-y Fye™M 4 yem Y Ly Ly g2, s (14)

which is displayed in Fig. 3. If y > ®, pR(A,y) > 1 with the rather fast
convergence. The effect of A is also limited to the range of 8 < 1, and
as found from this figure, pR(A,Y) is minimum at the center of the struc-
ture, while maximum at its edge. The latter is, as the case may be, more
than 1.5 times as high as the former in usual values of y. Fig. 4 shows
|DF| with a parameter Yy, when n = ©, A = 0 and h = 0.1. The considerable
difference is recognized as Y changes. Especially the increase where B < 1
together with the decrease when B = 1 is remarkable. The both approach
unity as Y *+ ©, which means the magnification factor becomes unity all over
the frequencies if inputs are uncorrelated. Y acts as a damper, and with
the increasing Y, the dynamic effect tends to vanish.

MEAN SQUARE RESPONSES

The power spectral density function common to each ground acceleration,
AG(w) , is assumed to be a band limited white noise with a constant density
W over wy < [wl < wu. The mean square response of the absolute acceleration

of a rigid slab, AGZ, is written from Eg. (7) as

00

AO,Z =/ IAFlZ.AG(w)dm' cccsccacs cecesescsecccacscncscosascsctsnan (15)

-0
Utilizing Eqs. (3), (8) and (9) to integrate, the response due to the above-

mentioned disturbance, becomes, with By = wy/wp and By = wi/Wp, as
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202 = aF(By) = aF(B1), srrecreceeseeeesieiiisiiiitiitititanettnn (16)

where pf(B) = AR(H,Y)zwa [4 V1 - n? Log B2 - 241 - h%B + 1
2 V1 - n? - V1 - n?
s 1A (et BN SR et BT o By

Especially when n = 1, B; = 0 and By -+ ®, then Eq. (17) is reduced to
202 = (1 + 4h®)TWpW/(2h), wecererererenesnrn ettt (18)
which exactly coincides with the conventional result for the perfectly

correlated ideal white noise.

on the other hand, the mean square response of the story displacement,
po?, is expressed from Eq. (11) as

Dd2 = [: lDFIZ'DG(w)dw- .......... tessscacescncsssnssersrecunnan (19)
The evaluation of this integral using Egs. (3), (12) and (13) finally gives
D02 = DE(Bu) — DE(BL), v eesecrerteretaiai e (20)

2W ,A,Y) - 2aR(n,y)? (n,\,Y) - aAR(n, 72 -1
where pf(B) = oo [Q(n Y : aR(n,Y)~  Q(n,AY = Y

_ 2@ - 2019, Ay) - (5 - BhZ)AR(n,Y)Zlong + 21 - n%+1

gyl - n? 82 - 21 - h2B + 1

2 2 2 n2 - - ~h?
+ 407, A,y) + (1 - BW)AR(M,Y) ™ (-1 B+ VA-RT -1 B -Vi-h® th).
4h h h
....................... (21)

If particularly n =1, B; = 0 and B; > ® in Eq. (21), then
DGZ = TW/ (2hwp3), =rreevercecacecccanecnnns sevrems besanumacemans (22)

which agrees with the result for the perfectly correlated white noise.
NUMERICAL EXAMPLES

Two different band limited white noises shown in Fig. 5 are dealt with
as examples. The noise 1 indicated by a solid line lies in a relatively
low frequency region comparing with the noise 2 shown by a dotted line which
is situated slightly toward the high frequency region. The both have the
identical mean square value of acceleration?), a0 z' as 1.2 % lO“galz. As
- shown in Table 1, however, the mean square value of velocity and of dis-
placement, vcgz and chz’ respectively, extremely differ each other. wp is
set to be 67 sec™ which is located nearly at the center of the bandwidth of
each excitation. h is assumed 0.1l. n is fixed to be infinity as its repre-
sentative. The value of A is taken zero, which makes the displacement
response maximum. After all Y is chosen-as a variable.

Fig. 6 illustrates the root mean square (R.M.S.) response of the
absolute acceleration, a0, versus Y. A solid line represents responses due
to two noises, which are approximately identical. This is expressed as the
product of the response due to the perfectly correlated input, 0o, by the
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revised coefficient, pR(Y). Besides p0p, due to the ideal white noise,
computed from Eq. (18) agrees with associated values considered here with
only 1% error. Now a chain line in this figure indicates the R.M.S. of the
ground acceleration, a0g/ for reference.

Fig. 7 shows the R.M.S. response of the story displacement, p0, against
Y. Two solid lines correspond to responses due to two noises, which nearly
agree with each other only when Y = 0, but considerably‘discord as Y in-
creases, to approach associated R.M.S. values of the ground displacements,
pIg. Since wide difference exists between pOg of two noises, responses
have the corresponding discrepancy as such.

As is found from Eq. (21), it is impossible to abstract exactly the
revised coefficient as in case of the acceleration response. However, if,
as this example, B; is relatively small comparing with unity, and if Yy has
some value with rather large n, then Eg. (20) is approximately reduced to
the following simple form.

Do-gDR()\'-Y).Do'g_ aescssacescsscscsccea seeevscecessesceccccs escsace (23)

Two dotted lines in Fig. 7 represent Eq. (23) where A = 0. The both well
agree with associated solid lines except when Y is quite small.

SUMMARY AND CONCLUSIONS

When the earthquake motion on a free surface spatially varies in such
a manner as expressed by Eq. (6), the acceleration induced to the structure
decreases by aR(Y) given by Eq. (10), if the foundation is infinitely rigid.
Responses are calculated as traditional outputs due to thus decreased
inputs. On the other hand, if each foundation is completely seperated, the
story displacement response is influenced by DR(A,y) in Eq. (14) together
with the displacement of inputs. Therefore the quite different standpoint
should be taken in its estimation, although the acceleration response is
approximately equal to that in case of the rigid foundation. Most of actual
structures belong to the category between these two extreme cases. The
space correlation index of. the free surface motion, Yy, is considered tc¢ be
divided into following two terms; the space correlation index which con-
tributes to the transfer characteristic from the ground to the foundation,
Ye, and the space correlation index of the input induced to the structure
from the foundation, Yg, which depends upon the rigidity of the foundation.
Y¢ is close to zero if its rigidity ;s high enough, whereas to Y if quite
low. The acceleration response will not differ so much from that in case
of the rigid foundation, but the story displacement response is governed
also by the peculiar mechanism with the application of yg to Eq. (23).
Transfer functions as well as R.M.S. responses are plainly summarized in
Table 2. In conclusion, the spatial variation of earthquake excitationms is
possible to have a great influence upon the response of structures.
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Table 2 Transfer function and root mean square response

Type Transfer function
of Ground > Foundation Root mean square rxesponse
foundation Foundation -+ Structure
. s Acc. AR(Y) - a00
Rigid Disp. AR(Y) 1 NI
. Acc. aR(Yf) aR(Ye) “aR(Yf) -a0o
Flexible 5o, aR(ye) DROA,Yg) aR(Ye) “pR(A,Y¢) -pOg
Acc., AR(Y) aR(Y) “a0,
Seperated I piop. 1 BROX,Y) DR(A,Y) “pog
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