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SYNOPSIS

This paper presents an approximate probabilistic dynamic analysis of the
interstory displacement response to earthquake~like excitation of n-story,
elastoplastic, shear structures. The starting point is the (elastic) response
of an associated linear system having the initial properties of the elasto-
plastic system. The yielding activities of the stories are grouped into n
'states,' each characterized by the story which yields first. Hysteretic dis-
sipation of energy and change of vibratiomal frequencies due to yielding are
estimated in order to compute statistics of the response during each yielding
state. The transition from the elastic to the elastoplastic response is de~
termined by a set of first~crossing probabilities. Finally, combination of
the n-states, conditioned by their probabilities of occurrence, leads to a
statistical description of the maximum plastic displacement for each story.
Results of the method for 2- and 4-~dof structures are compared with the re-
sults of simulation studies (2,3).

INTRODUCTION

The starting point for the developed theory is the work by Knarnopp and
Scharton (4), extended by Vanmarcke (5) and Vammarcke and Veneziano (6), on
the probabilistic response of one-degree~of-freedom inelastic oscillators. In
order to extend their analysis to m-dof structures, extensive simulation stud-
ies (2,3) were conducted. The results of these studies served as a guide in
making a number of necessary simplifying assumptions, and were used to com-
pare with the results of the method. 1In this paper only the stochastic theory
is presented. The input is a power spectral density function, G(W), and a
strong motion duration, S; and the output the probability distribution of the
story ductility factors, y .

RESPONSE DURING ELASTIC INTERVALS

At times when no plastic action occurs in any of the stories of a struc—
ture, the elastoplastic system behaves like an elastic m—~dof oscillator (assoc-—
iated linear system). The response of this system can be described by the
variances of the interstory displacements, 0%, and the (elastic) apparent
frequencies of vibration, 2. From elastic random vibration theory (8)
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and ¢, ., Fk are the modal shape and participation factor of the kth mode, re-
spectively, gy is the damping ratio, and ¥ is the kth eigenvalue. The fre-
quency, Qi, is computed (2,3) by a weighted superposition of all the modes

n

{): 21/2
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where the weighting factors, p 4> represent the fraction of total response of
the story of interest contribu%ed by the kth mode; the apparent modal frequen-
cy, 1s itself a weighted combination of Wy and the central frequency of the
input motion (2). -

Equivalent stationary intervals are estimated, and it is assumed that
the (elastic) response is Gaussian. The first-crossing probability theory
(1,5) is then used to give the probability of any story yilelding before the
others. For the ith story this probability is

fom— i=1, 2, .o. , n 4)

where the decay-rate of the first-crossing time is approximated (5,6) by

l-exp {-rivzc}

L exp (x2/2) - (5)

(y,iz
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The dimensionless r4i ratio is related to the yield displacement Yi, by the re-
lation: T = Yiloi'

RESPONSE DURING A YIELDING STATE

Once the relative displacement of a story crosses the yield level, chan~—
ces are that this event will recur ‘during a number of consecutive cycles of
motion. The response of every story can then be viewed as a two—state process
with purely elastic or elastic-plastic time intervals. When the elastic inter-
vals of all the stories overlap, the response is elastic and can be described
as was presented above. The question now is to describe the behavior of the
structure when at least one story is in its yilelding state.

Assume that the 1th story yields first following an elastic interval. Dur-
ing its yielding state, other stories may or may not yield. The plastic excur-
sions which occur before the other stories yield are described in the same way
as for a 1~dof system (4,6). By equating kinetic energy before yielding with
hysteretic energy dissipated during yielding, the expected plastic displacement
due to a single plastic excursion &;is estimated to be: &4~ 04/2r;. The ex-
pected number of comsecutive plastic excursions (mean clump size) is approxi-
mated by the formula (5,7)

~1
ny E[N,] = {1 - exp [- 2% ri]} (6)

An initial estimate of the average duration associated with the ith state,Ti,
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is obtained by dividing nj by ® /ﬂ), where 2% is obtained from the elastic
frequency £ multiplied by an empirical reduction factor which accounts for
the effect of yielding on vibration frequency.

At the same time, the other stories receive less power, and those that
are above the yielding story vibrate faster than before yielding, as simulated
responses clearly indicate (2). The first effect is translated into a reduc-
tion of the elastic r.m.s. value for each story m by a factor Ei, such that:
(new)omi = gigm‘ On the basis of rather mild assumptions, gi is found to be

1/2
(7

Z Kok

k=1

where K; is the elastic stiffness of the ith story. The increased frequencies
are estimated by considering the stories above the yielding one as a separate
substructure. The smaller number of stories implies a stiffer structure and
therefore higher frequencies of vibration.

The question of whether or not other stories will yield during the yield-
ing state of the ith story 1s answered by again applying first-crossing proba-
bility theory to each story, using the reduced r.m.s. value © i The probabil-
ity that the mth story will yield is approximated by ’

Py = 1~ (l-exp [—rii/Z])'exp(—o.mi'ri) - (®

where r ., and & . are computed on the basis of the reduced r.m.s. value (g_.).
mi mi mi

Whenever another story yields, additional energy is hysteretically dissi-
pated and new changes in the vibrational frequencies occur much in the same
way as was previously described. These effects are accounted for, and the
first-crossing theory is again used to find the probability of other stories
yielding, and so on. While for a 2- or even a 3-dof structure the combination
of the yielding activities (during one yielding state) is rather straight-
forward, it becomes very complicated for multistory structures; an approximate
method has been developed to this end.

The above-mentioned procedure can be repeated in case another story yields
first following an elastic interval. It is conveniert to refer to "state i,"
where i is the first yielding story. The response of the structure can be
viewed as a random sequence of n states (n = the number of stories) separated
by elastic intervals. The statistics of the response of all the storieg dur-:
ing each state are known, and the question is how to combine them in order to
obtain statistics for the overall response.

COMBINATION OF STATES AND MAXIMUM RESPONSES

The expected total number of yielding states, N, is approximated as a
weighted combination of the expected total number of occurrences of each state
occurring individually The latter is equal to So/,q,i, where Sy is the "equiv—
alent stationary'" response duration and %, is the expected duration of an it
yielding state and the following elastic 1ntﬁrval. The welgntlng fattors are
the probabilities fi of occurrence of each state, i.

The problem then is to find the expected number of occurrences of each
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state if the total number of occurrences is N. This requires the joint proba-
bility distribution of the "number of successes" of n states, each having a
probability £y of happening, in an "experiment" with N trials. The answer is
a multinomial distribution with parameters the probabilities f;. From this
the expected number of occurrences, xj, of each state is computed.

Elx,] = NE, , i=1, 2, ... , ™ 9)

So, the response process is viewed as a sequence of n groups, each consisting
of Nfi(ith) states with known response statistics and separated by elastic
intervals.

Simulation studies by other researchers (7) as well as the study in con-
nection with the research reported here indicate that the probability distri-
bution of the maximum plastic displacement, d, of each story during a plastic
state has an exponential form. The distribution that was found to yileld best
results is

F(d) =1 - exp [-d/(m&)] (10)

where n is the expected clump size of the story of interest in the plastic
state (Eq. 6). One can then argue that, since a next plastic state starts
adding plastic displacement from the final plastic displacement of the previ~-
ous one either upwards or downwards (with equal probability), the average
total plastic displacement 1s independent of the final plastic set of each
state. Therefore, with regard to the expected value, the maximum plastic dis~
placement is the maximum of each state maxima and therefore its probability

distribution is
n

n
$(d) = TT &,(d) = [1 - expl-d/6.5.)]
;!Il 1 “1 P

Nf
] 1 (11)

from which the expected maximum plastic displacqggn;ﬁﬁ} is obtained numeric—
ally. The mean ductility factor is then simply U = d/¥+1.

For the variance of the maximum plastic displacement a generalized random
walk model seems reasonable, because it is felt that what basically contri-
butes to the variance of the response is the superposition of permanent plas-
tic sets. Hence one can write for the variance of the plastic set of the n
groups of plastic states

2 o}
2 . 12 2 - _ -2
% 1ZI{E[9K1] oniwxi(ntnilﬂ iglmsi{fi(z £+ QL+ oT) } (12)

The standard deviation of the ductility factor is then simply'du = GD/Y.

The mean and standard deviation of § are then used to compute the param-—
eters of an Extreme Value Type I distribution which was found to be a good
approximation of the probability distribution of the ductility factor (3).

COMPARISON WITH RESULTS OF TIME-HISTORY ANALYSES

~ Results of the theory are compared in the next page with statistics from
the time-integration analyses. Fig. 1 compares the results for a 2-dof struc-
ture and two different motion intensities and Fig. 3 the results for a flexible
4-dof structure and two motion durations. The agreement is quite satisfactory
and it seems that the model is able to predict even small changes in the re-
8ponse when various parameters are varied.
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