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SYNOPSIS

This paper deals with the methods of solving the Fokker-Planck-Kolmogorov
equations with an appropriate initial or end condition and a mixed type
boundary condition on a bounded domain, particularly paying attention on the
seismic reliability analyses of nonlinear structures. First, as the mathe-
matical bases of this problem, a generalized Green's formula for nonself-
adjoint partial differential systems and the associated stationary functional
theorems are presented. Then, defining a reliability function in terms of
Green's function of the Fokker-Planck-Kolmogorov partial differentiasl system
with a bounded boundary surface, some kinds of solution techniques based on
the boundary value problem as well as the variatioral method are discussed.

INTRODUCTION

It is well-known that the dynamic behaviors of a soil-structure system
to earthquake excitations are expressed by a set of the first order nonlinear
ordinary differential equations including uncorrelated stochastic processes,
which is called the stochastic differential equations, taking a sufficient
number of state variables and enlarging the system so that the Gaussian white
noise processes are reasonably assumed as the inputs to the system. It is
also known that if the nonlinearities involved in the equations are of quasi-
linear type, the solution is unique and belongs to the Markov vector process-
es and significant quantities describing the probabilistic state of the
system such as the transition probability density function, the probability
of exceeding a prescribed barrier surface are governed by the Fokker-Planck-
Xolmogorov equations together with pertinent initial and boundary conditions
1], 2]. By considering appropriate additional state variables, a class of
hysteretic nonlinear systems is expressed in terms of quasi-linear charac-
teristics 3], U4].

This paper deals with the methods of solving the Fokker-Planck-Kolmogorov
equations with an initial or end condition and a mixed type boundary con-
dition on a bounded domain, especially in relation to the seismic reliability
analyses of nonlinear structures. An analytical expression of the probabili-
ty of aseismic safety of single-degree-of-freedom structures was first
presented by E. Rosenblueth based on the diffusion equation, which is a
special kind of the Fokker-Planck-Kolmogorov equations, together with perti-
nent initial and boundary conditions 5]. TFor a general class of linear dy-
namic systems such as multi-degree-of-freedom structures, however, it is
difficult to solve analytically such the linear parabolic partial differential
systems involving the boundary conditions on bounded domains. As far as non-
linear dynamic systems are concerned, only a few analytical solution is known
even for the steady-state probability density functions 2]. From this aspect,
the methods of solving approximately such the Fokker-Planck-Kolmogorov differ-
ential systems are discvssed here. Prior to the discussions on the seismic
reliability analyses based on the Fokker-Planck-Kolmogorov formulation, some
mathematical bases concerning a general class of nonself-adjoint partial
differential systems are presented.

I Prof. of Faculty of Eng., Kyoto Univ., Kyoto, JAPAN
IT Prof. of Disaster Prevention Res. Inst., Kyoto Univ., Kyoto, JAPAN

1065



MATHEMATICAL BASES

Corresponding to a linear partial differential system governing a physi-
cal scalar quantity, there exists the adjoint linear partial differential
system defined by the following generalized Green's formula:

(V2w = (LX%, w)q= C (W) ==C*(u,v) = (B1,B8u)pn— (B, B*udq (1)
in which f2 is & domain included in an n-dimensional full space R™,aqQ is its
boundary surface, w and v are scalar-valued functions defined on f=aua
and ( , o ( 5  hgBTe scalar products defined on . and 3R, respectively.
The operators £ and B are, in general, nonself-adjoint linear partial
differential operators associated with equation and boundary condition, re-
spectively, and £L* and B¥*are their adjoint operators which are uniquely
determined together with the relevant boundary operstors ® and B* from (1).
Hence, there exists a pair of nonself-adjoint inhomogeneous partial differ-
ential systems, namely

Lu+Ff=o on 2 LEy + g =0 on {2 (2)

BuU + k=0 on 20 , B*r+ L=o on 202
Correspondingly, a pair of Green’s functions, R, ¥) and A¥x, %) are defined
as the solutions to the systems which are obtained by substituting f= §x-¥),
Am0 and §=4(x~¥), =0, where »e{l, B,p€n and § means n-dimensional
Dirac’s delta-function, into (2), respectively. The reciprocal property of
Green'’s functions for nonself-adjoint systems is obtained by substituting
V=4 and u=A*in (1) as follows:

‘-‘*11’)"*}(%)}) » ;4 en (3)
Similarly, by maeking use of (1) and (3), the integral representation of so-
lution to (2) in terms of Green'’s functions is obtained as follows:

U= (“-,f)n~(9ﬂ,i)aa , v=(3, 'ﬁ.*)n"‘(l,ﬂ*ﬂ*)m (%)
It should be noted that in the above equations the scalar products and differ-
ential operators are concerned with the latter vector varisbles of the Green's
functions. From (L4), Green’s functions associated with the boundary con-
ditions concerning the operators B and 8% are respectively determined by

RoC, B m — By (e, §) , AN, q)=- Byht(x, o) (5)

xell , 3, Med20 ¥ X
In particular, in the case where (&£,8,0) = (L,8;8") the differential system is

called self-adjoint, and its Green’s function becomes symmetric.
For nonself-adjoint inhomogeneous partial differential systems given by
(2), the associated variational principles are expressed by the following
two stationary functional theorems:
Theorem 1. The stationary point of the functional defined by
Tr,uy=(v,Lu)a + (V,‘f)n*(a:“')a »
- (BVv,8%)a ~ (B, A)aa— (L, B¥udaa= T (u, V)
with respect to v and u is a palr of solutions to (2), and vice versa.
Theorem 2. The stationary points of the functionals defined by

ST W= Rwat (v, fla - (B¥,8u)an~(8v, A)2n (1)

T v)= (v, wWg + ( §,wWa - (8*0} ﬁ*ﬂ-))n."' (2, b‘u)u (8)
with respect to v and w , respectively, are the solutions to the first and
second systems in (2), and vice versa.

By meking use of (1), the first and second variations of the functional
defined by (6) are expressed as
SvuTr,uy = & THu, ) = (§v, Lut o= (BSv, But A )an (9)

nd + (¥ 3 - (g™ *fu
LuTtviwy= 64, T u, vy = u,,,z:.fi Ii’n:ﬂf’s:u‘” v+, BT5uha
i A

(6)

an

2 (10)
+ ( ~( L&,B"l’um
Hence, the arbitrariness of the variations dv  and ?u. in (9) yields the equiva-

lence between (2) and &,uTv,w)= Su,vT X u,)m0 . On the other hand, the first
variations of the functionals defined by (7) and (8) are respectively given by
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SvTwr; W= (6v,Lutf)a — (a:\»,aw %) (11;

LT s v) = (L*v+ 8, Su)g - (B*r4 L, B*Su)2a (12
Hené‘eT, %e first and second systems in (2) are equivalent to §»Jt(v;u)=o and

SuT*u;v)=0, respectively. It is noted that solutions to the first and second
systems in (2) make not only all orders of variations of the functionals
defined respectively by (7) and (8) but also the functionals themselves to be
zero. When the inhomogeneous terms in (2) are prescribed, it is always
possible to convert the inhomogeneous terms of the boundary conditions to
those of equations by introducing appropriate boundary homogenizing functions.
In particular, for self-adjoint systems Theorem 1 reduces to the following
corollary:
Corollary. The stationary point of the functional defined by

Jtw) = (u,Zw)n+ 2% —(Bu,Budea -2 (Bu, £)ea (13)
is the solution to the self-adjoint partial differential system,atu+)(=o on
n ,Bu+dk=oond», and vice versa. Particularly, if the operators £ and 8
are definite, the solution to the differential system is the extremal point
of (13).

In relation to the approximate direct solution techniques to variation-

al formulations, the corollary corresponds to Ritz's method, the theorems
1 and 2 may correspond to Ritz-Galerkin’s method. And, the method of setting
directly the functional defined by (7) or (8) to zero corresponds to a modi-
fied Galerkin’s method or the weighted residual method 4].

RELIABILITY ANALYSES

The Fokker-Planck-Kolmogorov formulation for the probabilistic states of
nonlinear dynamic systems subjected to uncorrelated stochastic excitations is
given by the following nonself-adjoint partial differential systems 1],2]:

.C,o-'s.’g['ﬁ'(-?g(b*f))'r-va,?] %p: 0 on SXT
Bop=nrlap—% (TP 25 p=o foo ogx <l oo (W)
= p= 0 ton oL =1
andxﬁtP =pafl¥) on Sxty
} [-‘-(555-)"-{- aJ]W%-k =0 on SxT
\Ey;-..u'f*&'fﬁ.v —7% =m0 -}oa oé"‘<' on 3SKT (15)

xg } tor *=1 on S xtu
In the aﬁv e equatlons, A (3,t) and b(w,t)= bT(»,t), Wvhere #e¢ T=s5uds and t&eT
= [te, tu), are the mean rate vector and covariance rate matrix with respect
to time + of the state vector ¥ at t ,>%% means the vector differential
operator, and ( )T denotes the transposed vector or metrix. The scalar
quantities p(w,t) and ¢lx,t) represent appropriate probability functions
defined on §x¥, and m and o are the unit outward normal vector and a leak-
ing coefficient function which are defined on the boundary surface »s. And,
the functions Py, (w) and ¢4, are initial and end conditions with respect to
t . In epplying the results of the preceding section, the domain a eand its
boundary surface »n are simply replaced by SXT and 3(SxT)= 3SxTU IxT, re—
spectively. By substituting the operators & , B, 8¢ and u=p , w=3 in (1),
the adjoint operators £*, 85w and 8&in (15) as well as the relevant boundary
operators Ds, De, b“ and .bt are determined, and the latter ones are given by
Bsug=~-94, v p=~p for 0 S x<I >
Bsiy=-n h*mir ¥, a::r—v[a#-*(%.wp»’l jov k=1 7 sx(ﬁ;ie)
B sfp= on S§xty , Btg=o0 , Bp= on Txtau
From (z), (5) and (16) the solutions to (lh) and (15) are written in terms
of the relevant Green's functions R and #*, which are the solutions to R
+5(W~ W, t-1,)=0, Bsh=Bph=0, and &*t’-}—:(?-—‘l‘.,tvtu)lo 8I#*=Bi#*=0, respectively,
in the following forms:
Plu,t)= ~(Beh, it)!xt‘ :-J, s R(=,t; »’ B0 P (AN (a7

g (#,t) = =~ (Le, Bt KD Gty =), ds g4, (39 R5Co, 1 ; W, tu)

1067



in which , " , (18)
hiat; ¥, t)= RX(FES HE) foa O, A=RT=0 fer t Sl

It is noted that R(a,t; ¥t) defined by the differential system with respect

to % and t satisfies the adjoint differential system with respect to . 2

and t/. In general, (17) can be considered to represent the Chapman-

Kolmogorov equatiorn., and the Green’s function & means the transition prob-

ability density function associated with a closed domain s .

The relisbility function r , which means the probability to remain
inside § at time t when started from a deterministic point wme. at time te,
is expressed in terms of 4 and #* as follows:

Pt | B, to) = fsds B (,t; o, to) = J5ds A¥(We, te; ¥, t) (19)
Transforming time variable teo to * by t=t-te, and setting R(®o, T; t)=r(t|,t-7),
the reliability function R(w,,T;t) is governed by

FR=[3 (b2, -0 + aT(3, t-1)) 35 R — = R=0 on SXT
* L 2 o (Re, t-T) _
35:R=~rﬂ, BT(%, D3R~ Toa(gatomTR=© Fov 0Sa <) o 25T (20)
‘Bf.: R= R=0 for o =1
3B =R=1
Whel?e%. € T=SU2S, TE€ T= [T, Tu) = Lost-tu], on §'x'r!

The relisbility function r(tw.,t,) is obtained by meking use of the solution
to (20) as follows:

FEl o, te)m R(Bo,t=te}t) , €5, tee T=lht] (21)
In particular, when @ , b and & are time-independent, the reliability
function r(tl e, 0)is expressed by R(w,t) 5],6].

The failure probability 4 is defined as

Flel e, t)= | —r(t] B, te)= I~ jsds RCa,t; t.,t.)-f_rrrf_‘?r w75, t,) (22)

where W represents the probability density function of theTfi‘x?s'ﬁtf)assage
time at which the exceeding 2s occurs. By making use of (1), (14) through
(16), (18), (19) and (22), the function w is expressed in terms of A as
follows:

w(a,tlr,,f.)::%h(',t: ¥o, to) o oS x<|

R T - S S I T 23]
Since the content in the square brackets is the probability flow, it is clear
that the homogeneous toundary conditions on »s. and »s, , which correspond to
o«=0 and 1 , represent the reflecting and absorbing boundary conditions,
respectively. By making use of fe¢, which is the Green’s function associated
with R", and & in (1), the following equations are obtained:

ER(w,t; ¥, te) + [ at I,;tss‘s‘.; sxRolW,t: 6,7 Bl g+ R (8,7 %, t)= Ro(B,t; W, te)
where g=o0 for ¥ERLS, g=1 for ¥eS, and W, eSS, Te Ta (to,t). (24)
If R. is known, the equation corresponding to ¥e€R™S represents the first
kind of Fredholm type integral equation with respect to ™R for arbitrary
eR™S and time ¢t . The Green’s function 4 associated with § is determined
from the equation corresponding to#%€ S. In particular, if 9s=»s,, the
operators in (2L4) take “he following forms T]:

‘3:‘.FQ.7*°= Re (. t;8,T) , Bl grh = w(g, 7]t (25)

rom the above discussions, it is found that the reliability function
is evaluated through (19) by knowing the Green'’s function 4 or R* associated
with (14) or (15), otherwise, by directly solving (20). 1In determining 4 ,
#* and K. and solving (1) and (15) or (20), analytical methods such .as
eigenfunction expansions may be limited to the time-invariant systems, in
which @ , b and & are time-independent. If the steady-state probability
densgity function Ps in R", which gives zero probability flow, is known, the
transformations, ps psp’ > §=PpPs ¢’ and T=t-te yield a pair of adjoint systems
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given by

L P’*P;‘L;!ﬁ'-"i!-;yt El'&;‘ag[?,l'% P’]-—;’;-P’no on SXT
P-Oa Pl‘ _-ur b’ 7 (.3 ,. (26)
P sP’a% %P T B0 I::o‘::: on aSx ¥
P Bep'= p'= Po/Ps o
and ? | 2T ) 2 " $xt
Ps"'-t,:%" K'LS ¢~ fi-?” inw Kb 55¥)-w ¥ =0 on SXT
P‘l = _n'r-&- v’f /_ of /- Pe) 2
: 1”- ¢'=0 wV-v= I:: °‘::: on 3SXT (27)
h—lat’,- '{. ?t/P‘ on gx,l.‘

in which T= (T, Ta)= (0,t-8,) and

b'=b+S, a'= a-%(.-,:’;s’f)‘ra a+ () , $=-3T (28)
If there exists a skew symmetric matrix § which makes & nonsingular and
¥-e/ irrotational, the function Ps is expressed as

Pst@)= axp (~U @)/ [ ds exp(-U(H) , Ru=-26"a’ (29)
For instance, when the damping force vector takes the form Dll.&)nstl)r z,
where % and % are displacement and velocity vectors, gcw) is & nonnegstive
function of total energy & , and I is the spectral density matrix of the
excitations, & , b , W and § are expressed as follows 2]:

o ~X ® 0 ®
"‘"[.1 1o rNE ""[o rl ., "[-'\)r"'g] ' "‘Lt} (30)
Wermz [Fgrpdy , V= exp(Um)[e+2[Fexp(-up)ayx)
in which ¥ is unit matrix, and @ is a constant matrix.
By making use of the eigenvalue matrix A, all elements of which have nonposi-
tive real paris, and bi-orthonormal adjoint eigenfunctions »$’ and «¥” of the

pair of adjoint elliptic partial differential systems, (Lg-xp)dwo ,Bsdmo, and
(% -AR) Y=o, B3F$=0, the Green'’s function & 1is expressed in the form 2],8],

Rt W, te) = AP W exp (A E-10), P (20 = PEBIngTw exp (At-to) ¥ iaopke, (31)
where n® and »¥ are the bi-orthonormal adjoint eigenfunctions associated with

(14) and (15).

In the cases of time-variliant systems in which @ , b or « are time-
dependent, approximate techniques based on veriational method including the
finite element method and Galerkin’s method may be advantageously applicable.
For the Fokker-Planck-Kolmogorov differential systems given by (1) and (15),
the functionals defined by (7) and (8) are expressed as follows:

Ty P =Ts 4 PI+Te(4; p) , TP =TX i +To(ps )
Tetyipy= I¥ps 9= fratfous [ o{ap-1 ( @wp)7}]
- et S b (32)
vyt o5 W W R e) p - [rat [o5 405 407 [ap-1 (3 5P )

Totas pra~teetSsds o Rep - [jas g by, - Sods T, Rt

TECh; )= Jratl ds (Fev) P=Ssds Yey Peu ~ [5 ds Le Pru
where T= (ty, +y) = (to,t) *
By making use of appropriate trial function systems # and W and unknown
vectors € and 4, the functions p and 4 are approximated in the forms

P= #7T(B,8)C(t,te) , g = dT(te,t) ¥ (Wo,ts) (33)
Substituting (33) into (32) and through stationarizing with respect to d
and € , respectively, and differentiating with respect to time, two sets of
the first order ordinary differential equations for the unknown vectors are
obtained. After all, the solutions are expressed as

Plw,t;te) = ®Tcw,t) Gret, te) Plted (34)

Y (F,teit) = @QT(E) @ ko, 1) ¥ (o, to)
where
Pt = Ssds pr,W , @Tetd= Sods §e #7
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and Ge(t,to)= @*T(t,,t) are solutions to the sets of eguationms,

-

A ke - Bira=0 , &t,t)= ATu-o) P A fds 4474 AT (36)
AL e+ B ead@=0 , &, E)= ATt s

in which if the boundary consists of »S, and 25, and if p and ¢ satisfy the

relevant boundary conditions, the matrix B is given by

\3 \¥ T
B=fasEZ¥ TV [ad-H(E )P -to(EHeM]+8 (37)
In the finite element method # used to be equal to ¥ and at least con-
tinuous across the element boundaries as well as to be time-independent.

CONCLUDING REMARKS

As the mathematical bases of seismic reliability analyses of nonlinear
structures based on the Fokker-Planck-Kolmogorov formulation, a generalized
Green's formula and stationary functional theorems associated with nonself-
adjoint partial differential systems were presented by introducing adjoint
differential operators with respect to equation as well as initial, end and
boundary conditions. By meking use of the generalized Green’s formula, the
reliability function associlated with a mixed type bounded boundary condition
was expressed in terms of Green’s function which would be interpreted as the
transition probability density function in a bounded or partiaslly bounded
domain. Also, the Kolmogorov backward type differential system governing the
reliability function of time-variant systems was derived. Based on the sta-
tionary functional theorems the variational formulation was presented, which
might be applicable to space- and time-variant Fokker-Planck-Kolmogorov
differential systems. As regards the method of determining Green’s function,
the boundary value problem for linear elliptic partial differential systems
as well as the integral equation formulation were discussed.
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