AN EFFICIENT APPROACH FOR THE DYNAMIC
SENSITIVITY ANALYSIS

Juan CassisI
SYNOPSIS

A new efficient approach for the dynamic sensitivity analysis of struc
tures is introduced. The method computes expressions of exact derivatives
of structural response functions with respect to design variables. The pro-—
posed method is compared with the traditional approximate finite differen-
ces approach and with another exact method introduced previously. Examples
applied to building frames subjected to a ground motion show the efficiency
of the proposed solution.

INTRODUCTION

The necessity of performing sensitivity analyses in structural engi-
neering; i e, the computation of partial derivates of the structural respon
se functions with respect to the design variables, has significantly increa
sed in the last years due mainly to the development of optimum structural
design methods.

Until recently, the computation of derivatives of numerical functioms
used to be performed by numerical methods, e.g., finite differences. In
the last years, exact and, at a same time, more efficient formulas for com
puting derivatives in structural mechanics have been developed.

In dynamic sensitivity analysis, the partial derivatives of the dis-
placements, which are central in the whole analysis process, are currently
determined in terms of the eigenvalue and eigenvector derivatives as well
as in terms of the derivatives of other relevant quantities as modal parti
cipation factors and dynamic load factors. This exact approach is called
here Method 1.

The method introduced in the paper, called Method 2, is also exact.
However, its formulation is simpler than Method 1 and by-passes the com-
putation of derivatives of eigenvalues, eigenvectors and other dynamic
quantities.

DYNAMIC STRUCTURAL ANALYSIS

As a reference to describing both methods of dynamic sensitivity ana-
lysis, it is necessary to give a brief description of the dynamic struc-
tural analysis.

For linear elastic structures subjected to dynamic loads, the finite
elements governing equation of motion is

M 5+ [] S+ [x] 2= Fw )

whgxe [M], [C] and [K] are respectively the mass, viscous damping and
stiffness matrices referred to the system coordinates in the structure;
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3, K, u and f(t) are respectively the vectors representing the accelera-
tions, velocities, displacements and applied dynamic loads, all in system
coordinates; t is the time variable. If it is assumed that [C] can be ex-
panded in Caughey's series, then the damped system admits classical normal
modes of vibration, and Eqs.il) can be uncoupled by a transformation from
nodal to normal coordinates q; namely

a=[o] q )
in which [%] is the modal matrix.

The transformation in Eq.(2) applied to Eq.(l) leads to the following
uncoupled system of equations

- > > T
] g+ [c] 9+ [k] 9= [o]" F (3)
The ith equation of this system may be written as
. . 2, 1 2 T=
q; + 2850595 twitqy = e ¥ )
i
c. 2 ki
where . = is the ith mode relative damping and w; = — is the
i Zmiwi i m

square of the ith mode frequency.

If F is separable in a product of a space and a time function,

F(e) = p £(¢) (5)

FTF =8P =1, £(0) (6)

[]

then

. . 2T > . .. .
in which Pi = ¢i P 1is the ith modal participation factor.

For zero initial conditions, the solution of Eq.(4) may be written as

: ri t —Eiwi(t—r)
qi(t) == f f(r) e sen w,.(t-t) d1 (7)
LW, . di
idi /o
where wyi = I—Eiz w; is the ith damped natural frequancy.

If the load is a plane ground motion ig(t) (horizontal acceleration),
then F(t) [M] € tg(t) (8)

r, = TSiT M 2 (9

> . .
and -e is a vector with components equal to 1 when they correspond to coor-
dinates of horizontal displacements and zero otherwise.

DYNAMIC SENSITIVITY ANALYSIS, METHOD 1

For this derivation, the eigenVéctors are assumed to be M-orthonorma-
lized. From Eq.(2), take the derivative of u with respect to a design va-
riable dj

-

u -+ _ - -»>
T [o ;] a+[e] g, (10)

The derivatives of the eigenvectors are computed from!

Qo

!

(=3
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where : R
35 (1= LD 3,
j i j i .
ai = o i#k
H k , (12)
1 =»>T >
8577 % [M,J.] ¢.

. - - 2 “
and n is the number of modes. The eigenvalue \j is equal to wj”®.

The matrices [M,.] and [K,. may be efficiently obtained from the de-
rivativga of the elemént mass (éonsiatent formulation) and stiffness ma-
trices <.

To compute E,j, write Eq.(7) in the form

q.(t) = T. R.(t) (13)

thus * ot
Q5= Ty 5 Ry ¥ To Ry (14)

Now, from Eq.(6) > -+
I, . =29, . 15
i,j° i, P @

Or from Eq.(9) for a plane ground motion

- -> > -
.= b, + . .
i % M e+ @, [M,J] e (16)
on the other hand
3Ri BRi
Rii " e, Yag T EE, B, an
But £. . = 0 because in practice the Ei are preasigned independently of the
design’~variables dj.
The derivative w; 3 is given by !
’
T (x,.] - w.2 ,.]) 3.
i j i i i (18)

wi,j = Zwi

This concludes all the computations necessary to obtaining ::j by
Method 1.

DYNAMIC SENSITIVITY ANALYSIS, METHOD 2

This approach is analog to one used in static sensitivity analysis 3.
Instead of differentiating the solution u of Eq.(l) as in Method 1, in this
method implicit partial differentiation is carried out directly from Eq.(l).

D] 5+ D w,L o+ o, ] @ [e] &, + [k, 08+ [K] 6, - —f,j (19)

This equation can bé rearranged to yield

.

- . 3> > 5 3 -
(M, + [c]u,; + [K]3,; = ?,j - ([M,j]II + o Ju+ [x4]8) (20)
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Comparison of Eqs. (1) and (20) shows that both have the same coeffi-
cients but different loading vectors. Therefore, each ﬁ,j is solved by modal
analysis using the same set of eigenvalues and eigenvectors, already determi
ned in the computation of d. This feature is specially remarkable when Me~
thod 2 is compared with the finite differences approach. In effect, to com-
pute the ﬁ,j by finite differences it is necessary to perform at least m+l
dynamic structural analyses (m being the number of design variables), each
of these analyses including a different eigenproblem.

Application to building frames subjected to a ground motion.

In the case of building frames the elements of the lumped mass matrix
[ﬁ] are practically independent of the design variables, since the contri-
bution of the slab, walls and other portions of the building is significan
tly greater than the own frame mags. Therefore EM,j] may be taken as a null
matrix. With respect to the term F,j, in the case of a ground motion, Eq.
(8) shows that the term f,j is null provided that EM,j] is null. In conse-
quence, for building frames subjected to ground motions the only terms that
c%ptribgte to the pseudo loading vector in Eq.(20) are —[C,j] 4 and
-1K,3j] 4.

EXAMPLES

Finite differences and methods 1 and 2 were applied to compute the de-
rivatives of the horizontal displacements in the steel frames subjected to
a horizontal ground motion shown in Figs. 1 and 2. Relevant data are inclu-
ded in both figures. Computations were carried out on the IBM 370/145 com-
puter at University of Chile. The program was written in Fortran and com-
piled Ly a Fortran G compiler. The cross sectional moment of inertia was
taken as the design variable in each member.

In the example of Fig. 1, two independent design variables were taken.
One corresponds to all columns made identical by linking of design varia-
bles and the other to all beams made also identical. Total CPU run times
for finite differences, Method 1 and Method 2 were, respectively, 6.12 sec,
6.44 sec and 6.38 sec.

Twenty independent design variables were selected in the example of
Fig.2 by making the columns in each story identical. Total CPU run times
for finite differences, Method 1 and Method 2 were, respectively, 1 m 44
sec, 1 m 30 sec, 1 m 24 sec.

DISCUSSION AND CONCLUSIONS

Example 1, being a small problem with 3 horizontal degrees of freedom
and 2 independent design variables, shows irrelevant differences in compu-
ter time among the 3 methods in comparison. However, in Fxample 2, having
10 horizontal degrees of freedom and 20 independent design variables, com-
puter times go more apart, showing that exact methods required less comput-
ing time than finite differences. Between exact methods 1 and 2, the pro-
posed Method 2 resulted more efficient.
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In conclusion, in dynamic sensitivity analysis, exact methods, in addi-
tion to have an exact formulation, are more efficient than finite differen-
ces in large problems. The dimension of the problem is measured by the num-
ber of degrees of freedom of motion, related to the order of the eigenpro-
blem in the dynamic analysis, and by the number of independent design va-
riables, which is equal to the number of partial derivatives to be computed
for the response functions. Furthermore, the exact method introduced here~
in proved to have a much simpler formulation and to be more efficient tham
the current exact method of sensitivity analysis.
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All beams: 18 WF 60
All columns: 21 WF 73
Youngmod. E = 2.1 x 10¢ Kg/em?

sm.—-f.-» 3"",_'}

Tributary weight per story: 50 T.

Ground motion:

9 STORIES @ 3m.

0 t<0
ul(t) =qug sin?pt 0<t <
> A ’
0 t>
Sm. #* 6m. ‘J[' e
Fig. 1 p = 30 rad/sec
3-story, 2-bay steel frame uge = 3 cm
t = 0.1 sec

Zero damping

COLUMNS
I
18 WF 60
.||- All beams: 18 WF 60
21 WF 62 Columns: As indicated in Fig. 2
1L
21WFT3 Young modulus, tributary load
L per story and ground motion
! same as in Fig. 1.
2LWF76
% Zero damping
1 2L WE 8¢
a |
'}' 12m 4
Fig. 2

10-story, 1-bay steel frame
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