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SYNOPSIS

The object of this investigation is to examine P-& effect of
gravity or the effect of vertical component of the earthquake excita-
tion in the dynamics - of beam-yielding steel structures with bi-
linear force-displacement relationship. In the analysis, a single-
degree~-of-freedom shear model is used. Statistical mean square
response of that system which is subjected to white noise excita-
tion at the base in both the horizontal and the vertical directions
is expressed by Voltera's type Integral Equation and is solved by
applying Laplace Transformation Theory. In order to examine the
dynamic behaviour of elastic-plastic structures, the anthors devel-
oped an original method of equivalent linearization.

INTRODUCTION

Structural members made of steel have advantages that they are
relatively light and ductile. So, steel members are widely used for
designing rather tall structures where some plastic deformation are
permitted. In these steel structures, when subjected to large
external force in both the horizontal and the vertical directions,
it might be expected that P-aA effect due to the increase of
horizontal displacement might become not to be ignored. In this
paper, this P-A effect is examined. There are several papers about
this problem. Jennings and Husid}’using an ensemble of pseudo-
earthquakes, reported that the P-a effect of gravity on the collapse
of structures can not be ignored, while that of vertical component
of earthquake excitation is negligible. C.K.Sun et al2 proposed new
design criteria to supplement the present design code requirements.

In this paper, by using statistical method, mean square (MS.)
transient response of a bi-linear elastic-plastic structure, which
is subjected to excitation in both the horizontal and the vertical
directions, is calculated by applying equivalent linearization method
and the P-A effect in its dynamic behaviour is examined. The rela-
tion between P-A effect and structural parameter such as height,
initial stiffness, yield displacement or stiffness ratio is also
discussed.

ASSUMPTIONS FOR THE ANALYSIS

The structure is assumed to be a beam-yielding steel one, and
is transformed into a single-degree-of-freedom shear model shown in
Fig.l. Bi~linear hysteresis with positive stiffness ratio, shown in
Fig.2, is used to represent the force-displacement relationship of
the structure,where such effects as stress hardening and stiffness
degrading are neglected. Vertical vibration is taken to remain elas-
tic when the plastic deformation begins to take place in the horizon-
tal direction. It is assumed that the horizontal excitation is a
quasi-nonstationary white noise and the vertical excitation is a
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stationary one., In the analysis, maximum response is estimated at
the level of 3f.

EQUATION OF MOTION AND MEAN SQUARE TRANSIENT RESPONSE

Equation of motion of the system shown in Fig.l is expressed as:
X+2hwx+ (W= @/H)x ==Z4®)-§x/H )

§eampg + Py =), @

relative displacement in the horizontal direction,
relative displacement in the vertical direction,
natural circular frequency of horizontal vibration,
natural circular frequency of vertical vibration,
damping factor in horizontal vibration,

damping factor in vertical vibration,

height of system,

gravity acceleration.

As the horizontal excitation is non-~stationary and the system
is non-linear in the horizontal direction, Eq.(l) must be solved by
applying step-by-step algorism. Let the horizontal excitation be
quasi-nonstationary and be expressed as ZH(t)mﬂ(t)xf(t), where (((t)
is a stationary white noise and £(t) a shape function. Then,
denoting the n-th step algorism by subscript n, and puttingzu,aﬁﬁgs

&y = 2hepn Wegm | QosWogn-G/H , Bm = E(tw)

equation (2) becomes
LXaX+0X +0ex =-a®)En- "ix H ., (3)
where

L - differential calculus,

h.%- equivalent damping factor,
Weq -~ equivalent circular frequency.
Eq.(3) is tramsformed into

t .
XE)n =- Bu[Ta(t-vr0&) dT - (1/H -T)4)xIAT+ Y(¢) ,
(Mtnsati)jﬁ i / )L Ty AR

where Aty is the time increment for the n-th step and
Lge)=8Ct) . L) =0,
Assuming that A(t) and X(t) are Gaussian white noise with the
following conditions,
W) y=<2v8)) = 0, LAR)R(E+TI? =9 Sad(T) 4 <Z k) Z (T+TI > 208, §(2)
where {-)> denotes the average value, §{ the Dirac's delta function,

S and Sy the power spectral densities. Then, from Eq.(4), MS
response of X and x in the n-th step are calculated as:

where

QEI Y YN
et

<207n =W SuEn [Pt TrdT + M St [‘gt-erc e, de +ep%e)> (5)
< X (£) o =TS Elj:, At-T)dT + 21 §§wH"f§ tt-t) <@ AT +18) > (6)
0 —
X RC) Dz 0 Sak (g(¢-22g (8- 22 dT 49 Tym H [ Fgt-vrg (- ) ¢
0 . (]
<X (7 AT + <PWOIPLEI> (7)
where —
? 1= (Wagn/p)Padny( Weyn/p )2

<‘j’€f>>-,1fl$‘; {to- |-1«|_x €M (Lo-qleosapt s {7 sim2pt ) )

3’ ] <“1('t)> l‘t‘w 1 ‘-PI - 'Pl('_nl) .
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JFurther, by applying Laplace Transformation Theory, Egs.(5),
(6), (7) become:

<HULIDa = ;C"‘ {Yc¢s) }

<2'(€)>n <N {%,«*e’a“tf-ﬁ‘;: wr20gt + 3 s 2wat) }

+ €M (ot + By Siavyteosiuat Ly S:2wat ) +2TSGm HEL (K2 Yes) }
<X()L(£) 7y = WSt B ul,‘; (1-cos2wgt )+ 8t (Aot + B 5wt Sim Wyt
s Gl wet)+ 2w KL LKoo }

where

Y($) = {2 Sabn K.LS)/$‘+§(<J}/{7-m,§i.‘H" K}, Ber= 2 {9 )
Kies) » ZIGA0T, k()= ZIFUOT | Ky(8)= LEGO4O) | A, <X0>

Ba(s) = - (1/wa}f 20 e KAD + Q> } | Cun(Viok J(QeXD> +0,0,<X, %, 5 + 03¢K, /4 )
Az = <X 2,5, By =(1/wa)(€X2>- 0¢x>) | Cy =-§0,00K220wi+02/2) <22, > +
a<xi>/2 b/ wi , $Xera ‘2'(*)7....|t. Atmy L <Eer w <X EI>0_q lt.at..-1 .
CLED © LD Jm|tadtnag |, wh « whor —hegt)

EUIVALENT LINEARIZATION METHOD

To calculate theoretically the MS transient reponse of the
elastic~plastic system with bi-linear hysteresis, random fluctuation
of the response is transformed again into the bi-linear loop having
the amplitude which slowly varies with time. When considering that
the system vibrates, evern in random vibration, with a period near
the natural period of the system, and assuming that the transformed
bi~linear loop also vibrates with the same period, this period is
almost equivalent to that of the bi-linear system, subjected to a
sinusoidal excitation, with the same ductility factor and the same
stiffness ratio as those of transformed bi-linear loop. The hyster-
esis damping factor and the circular frequency of this stationary
resonant response is assumed to be of the equivalent viscous damping
and the equivalent circular frequency of the system which is under-
going elastic-plastic vibration. The method to calculate these
coefficients is as follows.

Equation of motion of an elastic vibration from point 1 to
point 2 in Fig.2 and that of a plastic vibration from point 2 to
point 3, when subjected to a sinusoidal excitation are expressed as:

%+ wrix-Xe(r-1)01-r)}c-Asnt
X - W {-rx+ X ll-v) }s-aA st
where ;‘L-xo/fY and
@ - circular frequency of the sinusoldal excitationm,
o - acceleration amplitude of the excitation.
From these equation with due boundary conditions at points 1,
2, 3 and with the conditon of that the response is in resonance,
following transcendential simultaneous equations are obtained to

calculate the equivalent viscous damping factor heq and the equiva-
lent circular frequency .

Filq.0)« Gy(m, 6) {40.0) +&y0q, 0} +G(q, 044, 0) = 0
Faly,) = Hiq, 0) Ha(q,8) + Hy(m, 8D Ha(n,0) =0

In these equations, r>0 and
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Gi(4.0)s A+ Beos B, &a(m 8) = M (- 4} )cosO-osq0) ,

Gy (1,0) = (1= Y b cos (PR ~FBrwosne }, Ga(M,0) = (NS - S UIUY-32)
Gs (M) = Bsium 6 -CIF SanllF R/ =78) | Hi(,6) 2(A+BeosBI=m2 ) r-n ')
Halq, b) = smne-(n/ﬁ)%(a?u<q-ﬁa) s H3(%,0) = 4 b-9cum
Ha®,0) = C{1- o s(/FR/m-F0) ~2(fu- 1), G HuM,000r-92) MHay,0) ,
Altr-far,Bet-r+Rr, C=0-r)/r +p , q = Dfw, ,0rw,ts

d,‘:XYw.l ,q .X‘w: R Q= d/d.‘ , ﬂﬂ“/ﬁ(X‘/Xo) s qusw .
where ty denotes the time required for the motion from point 1 to
point 2., The calculated results are shown in Fig.3.

In this analysis, root mean square (RMS) value of the response
is used for checking plastic deformation. If the RMS displacement
increases over the value 1/2.5 of the yield displacement of the
system Xy, it is regarded that the plastic deformation has taken
place. This assumption must be correct when cconsidering the fact
that, in the disital simulation of a random vibration of an elastic
system with 200 simulated functions, the ratio of the maximum
displacement to RMS displacement at each step is 2.0~~3,0 and their
expected value is about 2.5. In this analysis, ductility factor
is calculated from }1=36547$XY)’ and the result of this analysis
is found to be quite accurate for M<4.0.

EXAMPLES

Models used for the analysis are classified as showa.in.Table
1. Each model is so designed that 2.5 times the value of its RMS
statinary response (i.e., the expected value of the maximum dis-
rlacement), when subjected to stationary white noise with S$4=20.0 in
the horizontal direction, might be the yield displacement Xy. This
yield displacement is set equal to 1/200 of the height of the struc-
ture for models A(A'),B(B!'),C(C'), to 1/100 for model D(D') and to
1/300 for model E(E'), Models A,B,C,D,E have the stiffness ratio r=
0.1 and models A',B',C',D',E' have r=0.5., The circular frequency of
the vertical vibration is set equal to 10 times the corresponding
value of the horizontal vibration.

Power spectral density of Ol(t) is Sg=20, Sx=80, Sx=180 and Sx=
320 [cm¥/sec?), which respectively has its maximum acceleration 150,
300, 450 and 600 [cm/sec?). Power spectral density of Z,(t) is set
equal to 1/4 of that of the value Sx. Shape function ¥(t) is

8¢t) =40s{exp(-0.3530t ) - exp-0.00-5 t ) }
This function has its maximum balue 1.0 at t=2.0x(2%Ww).

In Table 2, the maximum ductility factors K of the 10 models
against various combinations of external forces are shown. In case
1, horizontal load only is considered, in case 2 gravity as well as
horizontal load are considered and in case 3 are considered the both
with the vertical component of the earthquake excitation. In Table
2, AL means the increase of M for case 2 when compared to case
l, or for case 3 to case 2.

From Table 2, it is clear that the P-A effect of the vertical
component is quite negligible. As the difference between, the circu-
lar frequency of horizontal vibration and that of the vertical vi-
bration is large, it seems that the parametric vibration or the like
does not occur. It may be pointed out that, if the ductility factor
is small, the stiffness ratio affects little the RMS displacement and
also the P-a effect of gravity; while, if tHe ductility factor is
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* considerably large ( far under the collapse limit), stiffness ratio
affects much. In this case, small stiffness ratio causes rapid
increase of both the RMS displacement and the P-A effect of gravity.
This gravity effect is larger in taller structures when constructed
based on the same design data as shown in the examples above. So it
is important for taller structures to control the yield displacement
under the proper value. However, as lower structures genarally have
smaller stiffness and relatively large yield displacement, cares
must be taken for selecting proper yield displacement values in
disigning even lower structures.

CONCLUSIONS

The results of the above analysis may be summarized as follows:

1l. P-A effect of the vertical component of the earthquake excita-
tion can be neglected.

2. P-A effect of gravity may increase the horizontal displacement
more than 10% and the effect must be taken into consideration -
even if the structure is far from the collapse., This is
important especially for structures with small stiffness ratio,

3. It is important to control the yield displacement under the
proper value especially in taller structures.

4o If ductility factor becomes larger than about 2.0, stiffness
ratio affects horizontal displacement and also the gravity
effect so much that special cares must be taken in evaluating
the stiffness beyond yield displacement.
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TABLE -1

R
0.1(045)

0.,1(045)

0,1(0,5)
0.,1(0.5)

0,1(0.5)

(%)

10.0

10.0

10,0

10,0
10,0

2.0
2.0

2,0

2.0
2.0

Ty(sec)| h(%)

0.046
0.13%6
0,216
0.073
0.164

0.46
1.36
2,16

0,73
1.64

Xy(em) | Tx(sec)

H/200

H/200
H/200

H/100:
H/300

e 2

H(em)

400
2000
4000

400
4000

MODEL
A

B (B)

¢ (C)

E (E)

TABLE-2
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