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ABSTRACT

Problems in the identification of the structural parameters of a build~
ing system from strong motion records have been investigated. Concepts of
local and global nonuniqueness have been introduced. Through an analysis of
a linear N-degree of freedom system used to model an N-story structure, con-
ditions under which global uniqueness follow have been found. The studies
indicate that global nonuniqueness may be obtained by proper instrument lo-
cation and point out that the roof and basement records do not have suffi-’
cient information to uniquely determine the estimates of stiffness and
damping. It has been shown that nonuniqueness may occur locally even when
the initial guess is close to the true parameter values.

INTRODUCTION

The prediction of structural response to strong ground shaking requires
the use of suitable dynamic models for structural systems. Typically, for
structures vibrating in the linear range, this would necessitate a knowledge
of the mass, stiffness and damping distributions in the structure. This
paper studies some of the problems underlying the determination of these
vibratory characteristics from ground motion records.

Many structures have been typically instrumented with two strong motion
accelerographs, one of which is often placed in the basement of the struc-
ture while the other is placed at the roof level. The investigation carried
out here deals with such situations and points out that the determination of
structural parameters from such "input-output" data is an ill-posed inverse
problem leading to nonunique solutions, thus requiring great care in the

interpretation of the dynamic models so obtained.
THE IDENTIFICATION PROBLEM RELATED TO STRONG MOTION RECORDS

The procedure for establishing a parametric structural model from
strong motion "input~output”" records is shown in Figure 1. The parametric
identificaiton problem starts with an assumed model of the structural sys-—
tem in which a set of unknown parameters are required to be "identified"
through the use of the records. Typically, since the mass distribution in
most structures is fairly well known, it is the damping and stiffness dis-
tributions designated by ¢ and k which need identification.

The response of the actual structural system to the ground imput v*(t),
at some location g in the structure, is measured by strong-motion accelero-
graphs suitably located in the structure. Both the input and the system re-
sponse records so obtained are contaminated by measurement noise m(t) and
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n(t) respectively. Beginning with an initial guess of the parameters to be

‘estimated, the model parameters are then so adjusted that when the structura
model is subjected to the recorded input v(t), the model response w_(a,t)

at the location a is "as close as possible" to the measured responsg w(g,%??
‘These adjusted parameters, which yield the ''best" match between v and wOPS,
are then said to be the "best" estimates of the stiffness and damping para-

meters.

Through the matching of model and measured response at a given location
in a structute is often used [1] as the criterion for the establishment of
the model parameters, the question that has received little attention in the
past, is whether or not there exists a unique set of parameters which yield
such a "best" match. This may become a problem of considerable engineering
importance, because if several different structural models could all provide
the same degree of history matching, then the structural analyst would not
be able to deduce the exact structural model from such input—-output data.

In this regard, two types of nonuniqueness problems can be isolated a)
global nonuniqueness and b) local nonuniqueness. Global nonuniqueness con-
cerns itself with the question of whether it is at all possible to obtain
from an infinite ensemble of input-output records, a definitive knowledge of
the parameters sought. It attempts to find out how many different structur-
al models would all provide the same input-output time histories. In cases
where several such structural models exist, the analyst may still be able to
find the correct model, if he has some prior information about the range in
which the parameters to be estimated lie. This leads to the problem of local
nonuniqueness, which studies the determination of the struectural properties
from a few recorded input-output histories when some prior information is
available. Such information can be used to restrict the parameter search
space leading to a 'localized' identification problem.

GLOBAL NONUNIQUENESS PROBLEMS IN BUILDING IDENTIFICATION

Consider the lumped mass model of an N-story structure represented by
the masses m.,, i = 1,2,...N and the stiffnesses k, i ='1,2,...N (Figure 2b).
Using the notation in the figure, for the system Starting from rest, we have
Mé + Aw = f where M = diag[m., m, ...m ], w = [wy, Wy ...wn]T, £ = [0, O,
...0, kv(t)]T and A is the Symm&tric, tridiagonal positive definite stiff-
ness matrix. In the following discussions soil structure interaction will be
neglected and the data will be assumed noise free. Using Laplace Transforms

we have

W_(3) . P, | o

Yoy By )
where Wn(l) is the transform of Wn(t) and Pi(l) is the upper ixi submatrix of
[R-AI] with K = ML/ 25,

The global identification problem deals with attempting to find the
stiffness k., 1 = 1,...1 from a knowledge of v(t) and w_(t). Assuming that
another sys%em defined by K having the same "structure" has the same
(N-n+1)th story response (Fig. 2c) to the ground input v(t), we must have,
for the two systems

b P ® Ky EE_.__l;n‘lm )
my my PN(X) me o PN(A)
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a) If n=N, the response is measured at the first floor level and it can be
shown [4] that relation (2) leads to a unique determination of the k,'s.

b) If n=1, the response is measured at the roof level, and it can be shown
[4] that there may be as many as N! different systems which would all yield
the same input-roof response time histories. Thus no matter how many inputs
are looked at, the building stiffnesses would remain unidentifiable. c¢)
Also, if history matching at some intermediate floor, n, 2<n<N, is done, a
maximum of N-n! (n-1)!(n-1) different systems [4] may exist which yield the
same input-nth story response. Table 1 summarizes the nonuniqueness situa-
tion for N < 6 stories.

NUMERICAL EXAMPLE: a) Undamped System: Consider a three degree of free-
dom system with m =m2=l, m,=2 and k. =k=1,k_=2 (Fig. 2b, N=3). This system
will yield the same top stdry response [4] as the system m,=m,=l1 and k. =1/2,
k,=1l, k=4 for any base input v(t). Thus from only a knowledge of the base
input and roof response it would be impossible to distinguish between the
two models However, if the criterion for establishing a structural model is
matching of the first story responses (that is the response of mass m ) then
the identification problem is unique.

b) Damped System: For a two degree of freedom damped system where k., k
are the story stiffmess, c.,, ¢, the interstory damping values, and m. and™m
the floor masses, it has béen shown [5] that there exists another system
which yields identical 1nput—roof response pairs with parameters k —k m ,
2—k /m , ¢.=c 9T and c¢,.=c /m where m =m_/ (m +m.) These two sys%ems ire
both ph§31cally ¥easona§le so'that w1tﬁou% prlor knowledge about the struc-
tural stiffness, it would be impossible to choose the right one only on the
basis of input-~roof response studies. Calculating the difference in the
first story base shear between the two models, we have for a frequency w,

kzwz(w) - k (m) _ m,w [(m )k - mlkz] 1w[(m )(klc2 1 2)]
Wz(w) l( 1+m2) (m2m2 - ic,w - kz)

Clearly. large differences in the base shear forces would occur for w2zk,/m
thus showing that the nonuniqueness problem may become a critical one from
the structural analysis viewpoint.

LOCAL NONUNIQUENESS PROBLEMS IN BUILDING IDENTIFICATION

In cases where global nonuniqueness occurs, it would be important to
investigate if available information about the range of the structural
stiffness in a structure can be utilized to converge to the true stiffness
values. If, in other words, one starts 'close' to the true parameter values,
can an iterative adjustment of the estimates be made from a few available
input-output records so as to arrive at the true stiffness distribution?

A commonly used procedure [2] for arriving at a good match between the model
~and the measured response is to determine the "sensitivity-coefficients'"
which give the rate of change of the model response at the measurement
.point a, with respect to the parameters estimated. These coefficients
determine the manner in which the parameter estimates need to be changed to
successively improve the history match between the measured and the calcu-
lated responses. However a determination of these coefficients involves
- the integration of the system equations (n+l) times (where n is the number
‘;of parameters to be estimated) at each iteration making the computation ex-
__tremely inefficient. For a 50 story structure (n=50) considering that one
y need 50 to 100 iterations to converge at a set of estimates, the com-
& putation times involved may become prohibitive. The algorithm provided in
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[3] utilizes an optimal control formulation for the problem thus reducing
the computation time by a factor of (nt+1)/2.

If m(x) and k(x) represent the mass and stiffness distribution of a
structure modelled as a shear beam of length L, starting from rest, we have
(Figure 2a)

3w _ 3
n(x) 25 = o= kG ;5 wlo,t) = v(t); o= (L,t) =
5t ox X

Using these equations we attempt to find k(x), from a knowledge of

w(L,t) and v(t), such that the error functional

1 .,.T obs a L 3k2 . bLakZ

5 [ v (@, 6) wm(L,t)] dt +5 J &GP +3 °(a 5)  dx
is minimized. The positive weighting factors a and b correspond to first
and second derivative penalties on k(x) and are adjusted from prior infor-
mation about the stiffness dlStrlbuthn. Taking variations we have [3]

LI 4
§T=[a2k a3k k(x )I +b8 2k A8k L fL[ 3%k 2K bg_g_ fL oY awcit]sk(x)dx
Fax <2 ?x lo 2 y O X ox

ax3 ax 9x

(3)
where T(x,t) satisfies

2 =2 e W+ w0 - @016 (L)

n(x) ——7 32

¥(x,T) = 0, —(x,T) = 0, ¥(o,t) = 0,-—— (L,t) =

Expression (3) can be used to calculate GJlék(x) so that starting from a
'close’ initial guess, adjustments can be made iteratively to the stiff-
ness distribution to minimize J.

NUMERICAL EXAMPLE: The method outlined above was used to identify the
linéarly varying stiffness of a l6-story structure having a constant, known:
mass distribution (Fig. 3a). Assuming that a good initial guess of the
stiffness distribution is available from prior information about the struc-
ture, an attempt at obtaining the true distribution by matching the model
and measured response for the base input shown (Fig. 3b) is carried out. It
is observed that though the model and measured roof responses are identical
the estimated stiffness distribution is not correct. This example illus-
trates the nonuniqueness that may arise in inferring the stiffness distri-
bution in structures, even if the initial guess is in close proximity to
the true estimate by the use of one, or a few records of ground shaking.

It points out that smodel and system responses may differ for inputs differ-
ent from those used in the identification process.

CONCLUSIONS AND DISCUSSIONS

1) We have illustrated through the use of a simple shear model for
structural systems that the matching of system and model responses at the
roof level leads to nonunique structural identification. 2) Global non-
uniqueness has been defined in this context as related to the lack of iden-
tifiability of a system from input-output records no matter how many re-
cords are used. Furthermore, it is shown that even when some prior know-
ledge of the structural system is available, estimates obtained from the
use of a few input records may not lead to reliable parameter values. Thus
nonuniqueness occurs even locally when the initial guess is in close prox-—
imity to the true parameter values. The later problem [3] is related to
the nature of the input and the sensor location in the structure. 3)
Globally unique solutions are guaranteed for the shear beam model if input-
first floor responses are considered for identification. The analysis here
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utilizes noise free data. In practice lower story responses would yield
higher noise/signal ratios. Despite this, some preliminary work [6] appears
to indicate that the first story response matching yields the best stiffness
estimates.

1

2)

3)

4)

5)

6)
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n 6 5 4 3 2 1
N
6 6! 96 36 24 4 1
5 51! 18 8 4 1
4 41 4 2 1
3 | 3! 1 1
2 2! 1

TABLE 1

Maximum number of solutions of the identification problem
for an N-story structure given the response at the nth
floor.
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