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by
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SYNOPSIS

The response spectrum technique is used in the development of a method for seismic
analysis of lightweight elastic systems supported in buildings of nuclear power plants. The
lightweight systems may be supported in one structure at several locations and elevations or
interconnected between two or more structures. The method can be applied only to the
systems which have classical normal modes. Methods of combining of modal responses are

suggested.
NOMENCLATURE
ABS =  Sumation of absolute responses as in Eq (13)
ACCI =  Combination of responses as given by Eq. (16)
ACC2 =  Combination of responses as given by Eq. (17)
AL A =  Modal displacement and acceleration, respectively, of the nt® mode of a
secondary system
Anm =  Modal acceleration of the n'® mode of a secondary system, when the
A support A has all directional responses of the m*® mode of the primary
system
a = Displacements of the r'? mass of a secondary system due to a unit
displacement of the support A
Amm = Acceleration response of the r'' mass of a secondary system in the nth
mode, when both supports are responding to the m'® mode of primary
system
Ao A = Sameas A but due to support A ouly
A m . = Sameas A _ but due to support B only
“AVE = Average of ABS and SRSS responses
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(DLF) (t) =  Dynamic Load Factor

f(t) =  Nondimensional time function

J = Number of masses of the secondary system

KE =  Kinetic energy in the secondary system

kg = Spring stiffness, secondary system

L, = Number of considered components of motion of support A

=  Number of modes, primary system

The r*® mass, secondary system

E E &
I

=  Modified mass equal to (a, M)

N = Number of modes, secondary system
S =  Number of springs, secondary system
SRSS = ‘Square root of the sum»of the squares of responses as given by Eq. (14)
U = Strain energy, secondary system
u () =  Displacement function of SDF system having natural circular
frequency w
U o max =  Spectrum acceleration
u_,u_,u_ = Relative displacement, velocity, and acceleration functions, respectively,

™’ rn’ In
of the r*® mass in the nt? mode of the secondary system

=  Natural circular frequency of the nt® mode of a secondary system

W, =

Xa X A X A =  Displacement, velocity, and acceleration functions, respectively, of the
support A, secondary system

X Ao =  Amplitude of the acceleration function of support A

r, = Participation factor of the n'® mode, secondary system

6 ' =  Rotational degree of freedom

P n-PA =  Constants for the mode n, secondary system (normal mode shape values)

sn
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INTRODUCTION

Lightweight .piping and equipment (secondary systems) constructed in nuclear power
plant structures (primary systems) must be designed to resist earthquake forces. Secondary
systems are supported at several locations within a primary system and may be
interconnected between two or more primary systems. The problem of analysing a
secondary system which is located in one primary system has been studied, Refs., (1) (2) (3)
(4) (5). However, to the writers’ knowledge the problem of a secondary system supported
by two or more primary systems has not been addressed. In this papaer the writers propose
an approximate but general method which can accomodate both of these situations. In the
application of this method it is assumed that both the primary and secondary systems have

classical normal modes.

In this method the secondary systems are analysed by the response spectrum technique.
Therefore, the modal acceleration response spectra of the primary systems at the support
points of the secondary systems are required to implement this method. These spectra are
defined as the response spectra for each individual mode of the primary systems and can be
calculated by either the time history or response spectrum technique.

Included in this paper is an example of a secondary system analysed by the proposed
method. These results are compared to a rigorous time history analysis of a secondary
system coupled to a primary system. In this comparison some methods of combining modal

responses are tested.

DEVELOPMENT

Consider the undamped multiple-degree-of-freedom (MDF) secondary system with two
supports, A and B, Fig. 1. Each mass point may have six degrees of freedom. However, for
simplicity of this development only motion in the XY plane is considered. If support A is
displaced in the x-direction by an amount X N all masses will undergo translation and
rotation in the XY plane. The displacement of the r*" mass may be expressed as a_ X, ,
ay, X A> and arex A> where Ay Ay s and a g are the translations and rotation of mass r due
to a unit displacement of support A in the x-direction. Again, for simplicity in the
presentation a_, a and a g are replaced by the notation a_. The system is further defined
to have J masses, S springs, and N normal modes. When the support A, only, is in motion in
the x-direction, Fig. 1, the kinetic energy, KE, of the system is

b} . N
KE=ZJI/:).MI(XAaI+Eum)2 ..

r=1 n=1

‘Where MI represents the translational and rotational mass properties, X A4 is the velocity of
the mass r due to the motion of support A, and ﬁr o 18 the relative velocity of mass r for the
nt%" mode of the system. The total strain energy, U of the system is

U= ZHhEk @A )
n=k
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where k_ is the stiffness of spring s and 4, is the distortion of spring s in the n** mode of
the system.

Expanding Egs. (1) and (2), and then as in Ref. (6) employing the orthogonality of
normal modes and introducing the notion of modal dlsplacement A by expressingu_ and
A in the form

Un = A, (urn/‘oﬁ-n) A, ¢,
.3

= A G A= A, 0

the kinetic and strain energies may finally be expressed as

J . . N . N .
KE =2 b M (Xja2+2X,a 2 A ¢ +T A% ¢2)

=1 n=1 n=1

Mm

U=

S

N
k2 Anda

1
The reduced form of Lagrange’s equation, then, yields the modal equation of motion
An+wflAn=XAI‘n ...(4).

where, the square of the natural circular frequency and the participation faetor of the n'k
mode, respectively, are

S J
Tk, ¢4 M ¢,
) s=1 . =1
v, =———— | =—— ... (5)
J J )
E M1'¢12'n 2 MI ¢rn
r=1 r=1

It is noted that M] is called the modified mass and is expressed as M =a M.
Defining X, = X, , T (t) the solution of Eq. (4)is
A, ®=-X, /w2 (DLF)Xt) T =u (0T, ...(6)

where u (t) is the solution for a smgle-degree—of -freedom (SDF) system having a natural
circular frcquency w,_ , when its support motion is defined as X f (t), and (DLF) (t) is the

dynamic load factor.

When the (DLF)(t) becomes a maximum, u (t) is also maximum, u_ .
Introducmg the concept of response spectrum, Ref. (6) thenu . is the value of the
response spectrum of a forcing function, X A for an undamped SDF oscillator having a
‘natural circular frequency w_. Since there is a frequency relationship between spectrum

displacement and spectrum accelexatlon then the spectrum acceleration is
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u =w?u | 4,..(7)

no max n no max
and the modal acceleration An of the nt! mode of the system becomes

An=fl;10 max Fn (8)

To expand the development to include all possible motions of the support A, it is .
noted that for any given mode of vibration of the primary system, m, all motions of support
A have the same time function f(t). This is based upon the premise that the primary system
has classical normal modes. Consequently, the algebraic addition of these responses is

required and can be expressed as

La
AnmA =E Aan .. ‘(9)
2, =1 A

where L, represents all components of motion of support A which are to be considered.
The acceleration of the rt® mass of the secondary system is then '

ArnmA =A’nmA(brn ) "'(10)

By expanding this development to account for motion of the support B, XB (t), the
expression for the acceleration of the r*® mass is similarly derived to be

‘K‘rnt=Ant¢rn A ERD

When both supports A and B of the secondary system are attached to the same primary
system the responses of the r'! mass due to both support motions should be added
algebraicly as

.

Apm = AxnmA + Arnt ...(12)

Eq. (12) yields the response of the r'! mass of the secondary system in mode n, when the
primary system is vibrating in mode m. It follows that there are N times M values obtained
by Eq. (12) and the combination of the separate responses must be considered. There are
many ways to do this. In this paper the following combinations were considered:

a) The summation of the absolute values of all modal responses of both systems
as

M N .
ABS=3 I [A__| ... (13)
m=1 n=1 . .

b) The square root of’ thesum

e /quare‘s summation of the modal responses
of both systems as Eh - :

(14)




c) The average of a) and b) as
AVE =1 (ABS + SRSS) ...(1%5

d) The square root of the sum of the squares of N responses of the secondary
system, obtaincd' from the algebraic addition of the values of Eq. (12) which are summed
-over M modes of the primary system, Ref. 1, as

N M ,
ACCl=[ T (Z A, )0PI1% ...(16)
m=1

n=1

e) The square root of the sum of the squares of M responses of the primary
_system obtained from the absolute sum of the values of Eq. (12), summed over N modes
of the secondary system, as

M N
ACC2=[ T ( Z|A,.| PI1* )
m=1 n=1
EXAMPLES OF APPLICATION

In Fig. 2 is shown a simplified dynamic model of a nuclear containment structure
supporting a lightweight flexible system. The primary system is described by masses 1
through 13, while the masses 14 through 20 represent the lightweight secondary system.
The primary and secondary systems were coupled for a time history analysis of responses
using the Helena E-W earthquake record normalized to 0.06g maximum ground acceleration.
Maximum responses (accelerations) in the horizontal direction were calculated for all masses
of the secondary system. The modal acceleration response spectra values, required for the
proposed method, were also obtained by time history analysis using the same earthquake
record.

The calculations were extended to include a variation in the flexibility of the
secondary system with respect to the primary system. This variation is described as follows:

Case 1, all frequencies of the secondary system are greater than all frequencies of

significant modes of primary system, i.e., w >w_ .
Case 2, all frequencies of the secondary system are in the range of the frequencies of

significant modes of primary system.
Case 3, all frequencies of significant modes of the secondary system are less than the

frequencies of significant modes of primary system, i.e., w <w_ .

Table I shows results of analyses for the combinations of acceleration responses as
obtained from Eqs (13) through (17) for the cases 1,2, and 3. The values in parentheses in
this table are the ratios of results obtained by this method to the result obtained from the
time lzustmy analysxs of the coupled primary and secondary systems.

; The résults show that in case 1 and 2 the best agreement is given by Eq. (16), while for
‘case 3 the best agreement is obtained by Eq. (14).
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SUPPORTS ON DIFFERENT PRIMARY SYSTEMS

If the supports A and B of a secondary system are on different primary systems
uncertainties are introduced, because the motions of the supports have different time
functions. Accordingly, a conservative engineering solution to this problem is suggested. To
determine the response of rt! mass of the secondary system add the responses, obtained
separately, from the modes of each of the primary systems. The phasing of the most
significant modes of the primary system must be considered. Refering to Fig. 3.a, the rth
mass will have maximum horizontal response when the motions of supports A and B have an
assumed phase angle of 0° as is shown when the supports move to position A’ and B
Similarly, the maximum vertical acceleration of the rth mass will occur when the assumed
phase angle is 180° as shown in Fig. 3.b. It follows then, that the maximum response of the

r*® mass can be expressed as

m =AIHmAiAInt (18)

Referring to the results of the investigation of a secondary system supported on one
primary system, it is concluded that the combination of modal responses should correspond

to Egs. (14) and (16). Namely,

N Ma Mp y
SRSS=[ 2 (2 A’,, *Z A o 1" ...(19)
n=1 m,=1 mp=1
N MA .. .o
ACCL=[ 2 (2 Agp, * 2 Aam g 2% ... (20)
n=1 mA=1 A mB=1

where, M , and My are the significant modes of primary systems.
CONCLUSIONS

It has been demonstrated that the response spectrum technique is generally applicable
for the analysis of secondary systems. In the examples, methods of combining the modal
responses have been suggested. More experience with the method and comparisons with
rigorous solutions of coupled systems is required before firm recommendations can be made
regarding the combination of modal responses. This method is particularly attractive when
the modal response spectra of the primary system are calculated by the response spectrum
technique.
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TABLE 1 - ACCELERATIONS OF SECONDARY

SYSTEM IN HORIZONTAL DIRECTION

Natural Periods of 6 significant modes of primary system: .6674, .262,
.1757, .066, .0502, .0363

CASE 1 - Natural Periods of Secondary System:

MASS

14
15
16
17
18
19
20

MASS
14
15
16
17
18
19
20

0.0855, 0.0846, 0.0308, 0.0178,0.0103,0.0094,0.0074,

SRSS
0.061(0.75)
0.093(1.14)
0.064(0.90)
0.089(1.32)
0.064(0.90)
0.093(1.15)
0.061(0.75)

CASE 2 - Natural Periods of Secondary System:
0.6032,0.5969,0.2175,0.1255,0.0725,0.0663,0.0536,

SRSS
0.061(0.74)
0.093(1.12)
0.244(0.93)
0.309(1.395)
0.244(1.07)
0.093(1.10)
0.061(0.73)

ABS
0.159(1.96)
0.204(2.51)
0.152(2.13)
0.143(2.13)
0.152(2.14)
0.204(2.52)
0.159(1.97)

ABS
0.164(1.99)
0.213(2.55)
0.450(1.71)
0.355(1.55)
0.450(1.98)
0.213(2.52)
0.134(1.98)

AVE
0.120(1.36)
0.149(1.83)
0.108(1.52)
0.116(1.72)
0.108(1.52)
0.148(1.83)
0.110(1.36)

AVE
0.113(1.37)
0.153(1.84)
0.347(1.32)
0.332(1.45)
0.347(1.52)
0.153(1.81)
0.113(1.36)

CASE 3 - Natural Periods of Secondary System:

MASS
14
15
16
17
18

19
20

1.9075, 1.8876, 0.6879, 0.3969, 0.2291,

SRSS
0.089(0.92)
0.145(1.34)
0.062(1.50)
0.059(0.97)
0.062(1.38)

0.145(1.23)
0.089(0.86)

ABS
0.242(2.50)
0.342(3.17)
0.152(3.69)
0.101(1.65)

0.152(3.40)

0.342(2.90)
0.242(2.33)

AVE
0.166(1.71)
0.244(2.26)
0.107(2.59)
0.080(1.31)
0.107(2.39)

0.244(2.07)
0.166(1.60)
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ACCI
0.085(1.05)
0.085(1.05)
0.074(1.05)
0.069(1.02)
0.072(1.02)
0.080(0.99)
0.080(0.99)

ACCl
0.086(1.05)
0.088(1.05)
0.253(0.96)
0.290(1.27)
0.254(1.12)
0.084(1.00)
0.082(0.99)

ACC1
0.103(1.07)
0.118(1.09)
0.098(2.39)
0.007(0.12)
0.028(0.63)
0.153(1.30)
0.121(1.17)

..

ACC2
0.083(1.02)
0.126(1.56)
0.089(1.25)
0.118(1.75)
0.089(1.26)
0.126(1.56)
0.083(1.02)

ACC2
0.084(1.02)
0.129(1.55)
0.294(1.12)
0.323(1.41)
0.294(1.29)
0.129(1.52)
0.084(1.01)

ACC2

'0.137(1.42)

0.224(2.08)
0.083(2.01)
0.067(1.10)
0.083(1.85)
0.224(1.90)
0.137(1.32)



[ %
="
L

Qg Xa— e
OreXa

r

ORIGINAL POSITION
———- STATIC DISP. POSITION
————— DYNAMIC DISP. POSITION

FIG.1 - SECONDARY SYSTEM HAVING
SUPPORT MOTION X,

'__o.o" (CONCENTRIC)

Al
2773 1'S SeconDARY
{ie— SYSTEM
‘4|2
3 17
18
B
491 20 !9

~——PRIMARY

5 SYSTEM
10
6
o : (b)
79 :
4,
777

8@:«*{ ' L | *

FIG.2—-COUPLED PRIMARY FIG.3— SECONDARY SYSTEM
AND SECONDARY SYSTEMS SUPPORTED ON TWO PRIMARY SYSTEMS

— 2047 —





