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INDIRECT BOUNDARY ELEMENT METHOD, A TOOL TO CALCULATE
SEISMIC RESPONSE OF IRREGULARLY LAYERED SEDIMENT

Toshiaki YOKOI*

SUMMARY

This paper shows the way to turn into reality the idea of the reflection and transmission
coefficients in the space - frequency domain for infinitely spread irregular interface by using
indirect boundary element method (i-bem) and to apply them to the wave field in irregularly
stratified media. The way is a hybrid method between the strategy of reflectivity method
developed in seismology and that of i-bem grown in engineering society. | consider i-bem as one
of the ways to disassemble the wave field into up- and down-going waves, the role of the wave
function of which is played by green's function matrices, and that of the coefficients vectors of
which by the imaginary forces distributed along both faces of interfaces. The usage of the
reference solution, that is the wave field in the corresponding horizontally stratified media, allows
us to handle infinitely spread interfaces. This method can stack the effect of transmission and
reflection on the wave field as wave goes by. Therefore, for example., The directly coming waves
from the seismic source can be separated from latter phases. The test case for homogeneous basin
shows the incident wave and reflected waves that bounce up and down in the basin. It is expected
that the formulation shown here can make easier the consideration on the wave field in complex
velocity structure and the search for good and efficient approximation.

INTRODUCTION

It may be required to calculate the seismic response of irregularly stratified media, if we have to estimate seismic
ground motion in an area such complicated geological setting as alluvial basin. During the 90's decade, a
substantial development took place in numerical methods for this purpose. Such domain methods as Finite
Element and Finite Difference Method have reached at practical application for real size problems, whereas such
boundary methods as Boundary Element Method and Boundary Integral Equation Method stay in the stage of
research. Unfortunately, the capacity of computer that we can use today is not enough to calculate real size
problems. The boundary methods, however, have not lost their appeal, yet and are attracting researchers, because
of the possibility for substantial improvement of cost performance and accuracy, not only by computer
technology, but also by the wisdom and the effort of the human beings. The topic introduced here is not for
practical application, but for the pathfinding for the future development of boundary methods.

The theory for the wave field in the horizontally stratified media given in the wavenumber-frequency domain
shows us the following. It is an efficient strategy to disassemble the wave field in each layer into up- and down-
going waves and to stack the effect of transmission and reflection as wave propagates [Kennett (1983)].
[Takenaka and Fujuwara (1994)] have applied a similar idea to irregular structure in terms of BEM (direct
formulation).
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This strategy can be useful in terms of Indirect BEM in the space-frequency domain in that up- and down-going
waves are given independently by the product of Green's function matrix and the vector of the imaginary forces
distributed along the interfaces [Sanchez-Sesma and Campillo (1991)]. Note that this Green's function
corresponds to the wave function in the theory for horizontally stratified media, and that distributed force vector
corresponds to the wave vector. This implies that the transmission and reflection coefficient matrices may be
able to be defined by the relation between these distributed force vectors. In this paper, | show a way to turn this
ideainto reality.

APPLICATION OF INDIRECT BEM IN THE SPACE-FREQUENCY DOMAIN TO HANDLE
TRANSMISSION AND REFLECTION

The main difference between the method in the wavenumber domain and that in the space domain is that the
former can be applied directly to infinitely spread plane interfaces and requires the integral over wavenumber,
whereas the later can handle just finite interfaces. After [Fujiwara and Takenaka (1993)] developed the idea
itself, the technique in Indirect boundary element method that can handled infinitely spread interfaces is
introduced by [Y okoi and Takenaka (1995)] for the two dimensional free surface. Then, by [Y okoi and Sanchez-
Sesma (1998)] for tri-dimensional one and applied to irregularly stratified media by [Yokoi (1996)]. The
technique takes advantage of the reference solution, i.e., the wave field in the corresponding horizontally
stratified media.

Transmission and Reflection at an inter face

First, consider an irregular interface between two half spaces of the material properties of which values are
different each other. Hereafter, | use the notation G..(x;&),H..(x;&) for the displacement and traction
Green's function, respectively, in (I)-th layer, of which source is located at & on (I")-th interface and of which
receiver is located at x on (I')-th interface. The distributed forces considered along the upper and lower face of
(D-th interface are written as 6'(5), @' (), respectively. Note that these forces are distributed just along the
interfaces that can be handled in numerical computation. For the forces distributed away to infinitely far along
interfaces, @'(£), &'(s) are used. The wave field in the horizontally stratified media in that the material
properties of each layer are the same as those of the considered irregularly layered media, is called the reference
solution. Down-going wave in the (I)-th layer is noted (g', 1') and up-going Wave(lT', f') for this
reference solution. These waves also have their corresponding forces distributed along the horizontal plane
interfaces. Vectors g (g) w'(¢) are used for these along finite part of plane interfaces. The configuration is

shown in Figure 1. The difference between continuous variables and operations and the corresponding discrete
ones is not clearly distinguished in the description, because the theory explained below is for numerical
calculation method. The difference, in contrast, between infinitely spread interfaces and limited ones is strictly
distinguished. < > is used to denote the integral operator along infinitely spread interfaces as explained below.

Up-going incident wave to an interface

Consider the up-going incident wave to the (I)-th interface from beneath (Figure 1). The reflection and
transmission at the interface are taken into account, but the reflection of the transmitted wave at the (I-1)-th
interface is omitted here. The boundary condition along the (I)-th interface, that is the continuity of displacement
and traction, can be formulated as follows. The wave field in the (1+1)-th layer is the sum of the contribution

from the distributed force along the upper face of (I+1)-interface @ " and that of the distributed force along the
lower face of the (I)-th interface ¢'. Whereas the wave field in the (I)-th layer is of the contribution from the

distributed force along the upper face of the (1)-th interface 3 Therefore

e Gl (x E)@”f)d£+j G'“xf)m (€)de = [ G () (€)ae,
[ HIL G0 )€ + [ Hi G (€)de = J’HHXE)CD (),

By using the expression for the operator for integral along the infinitely spread interfaces,

for xOS. D
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Asit is not possible to handle infinitely spread interfaces in computer, the interface S is divided into S; that can
be made discrete and handled in computation, and the rest of the interface S
(©)

The up-going wave of the reference sol ution inthe (1)-th layer is given as

@j‘ () =[, G, (&) (€)de + [ Gl ()P (),
() = [ Hi, beg)w d£+j alf x,f) (€)ac,
Similar formulas can be given also for down-going wave in the (1)-th layer (_
(1+1)-th layer ('™, t'*l)

for xOl —th layer. 4

o '*1) and up-going wave in

The asumption w . (a)w '(s) '*%s)w '”( ) ens gives
O IsllG”il XE) df +J- G|+1 ( ) I+1 —|+1 J- G|+1 E,)df,
: j‘lel'.*ilxé “(e)ag jG )@'( £)é + ;G (€)ae. (5)

O |+1 I+1 I+1
f.H [a(E) @ (E)E +[, HIT(E)D (€)dg +1'() +€ _|’ HI (&)W (6)de
T [ Hi(eeW T ()de= [ (oep '(s)d£+ 0 [ HL &y (E)d{, for xOS..

Discretization of these boundary integral equations gives the following simultaneous linear equations.

'O EG,'l O G [«L| H_ MD G0 G0 EL g [GllﬁlDHﬂ G\ E»mH (6)
D_ U-IJ +H_| |+1D_a_||+1|j£ + |+1|]P |+1D_H_||+1 g (PP

|D || nd H g |||] L+ 1+ H

The left member represents the up-going wave in the (1)-th layer, where as the first parenthesis of the right
member corresponds to the down-going and the second to the up-coming wave in the (I+1)-layer.

Moving all known variablesin the right member, the following simple equations are obtained.

G, -G/'0p0_Hu"0 G E-I—|+ Hes E-I—|+ panREcygE D G, O
oA e e e s T R MR R O
o —HI ' Hi+ Hi+ g ||D H

Define the transmission and reflection operators, respectlvely o] —< I|+1>q3'+1 q) <R|,|+1>‘D'+l-
By using this solution, the transmitted and reflected wave field can be numerlcally estimated as follows.

G|>” <G|> FU\GIH ‘D [G'\‘I EL' EGH EL' <G||Tl>el <G||Tl> S 0 G, 8)

e = e =gl O N I o= = = TS

<H|,| HI‘,I < . 1> a"ulj HI] HII‘Il H||,|1 <R” > gl D_E"hléﬂ E"hléﬁ

It is not necessary to obtam the value of @' :<T|LIJ 1>&3'+1 org = <Rﬁ 1>$'+1_ The quantities that are used in the

next step of computation are the displacement-traction vector <G| 1 \g'and G CD' as shown above.
H II | H |I Tl

Down-going incident waveto an interface

Consider down-going incident wave to the (I-1)-th interface from upside (Figure 1). The reflection and
transmission at this interface are taken into account, but the reflection of the transmitted wave at the (I+1)-th
interface is omitted. The boundary condition along the (1)-th interface, that is the continuity of displacement and
traction, can be formulated as follows. The wave field in the (I)-th layer is the sum of the contribution from the

distributed force along the lower face of (I-1)-interface ¢'™ and that of the distributed force along the upper face
of the (I)-th interface 5‘ . Whereas the wave field in the (1)-th layer is of the contribution from the distributed

force along the upper face of the (I)-th interface P ' Therefore, the boundary integral equation expressed by
integral operatorsasEq. (2) is

e =)

(9)
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The assumption & (§)DW (£),®'(€)0W' (£), £0S,® (€)W ™(£), £0S™, gives the following
integral equation that corresponds to Eq (5)

D[. GlalcE)e™(E)e + [ G, E)df+u I Gl ( Jag
J’.lG.'._le) e = J’G E)d£+u'*1 IG ()de,
i E)e E)dE + [ H.|XE)¢()df+t )+t ()=, Hl.(xf ()ae
g Jor (e R(E)E = [ Hi, (&)o' (€)dg +17(x)- [ Hi, (&)W (€)ae,

Discretization of these boundary integral equations gives the following simultaneous linear equations.

%E’_[Glllllji,ll_i_mllllmlla El_m|l|gp—l+[G,I|D—|El: ||:1lg_mll|iﬂ£ EG.'Tl |B (11)
1O -0 -0 ||] ||D a"lllj H S"HD |||]

The first parenthesis of the left member represents the down-going |nC|dent wave, whereas the second
corresponds to the up-going wave in the (1)-th layer. The right member represents the down-going wave in the
(1+1)-th layer. Moving al known variablesin the right member, thefollowi ng simpleformulaisobtained

| _ i+ 0 0 | 1+1 . |+1|:| |+1

ﬁl;l G||L1EE£ = _% = (G, H[jﬂ 4y ﬁll:ll —1El_ || ! EL_ |+1|:|' ﬁvﬂ o' (12)
o —HI ' | ||—1|:| 1+ ] H ||:J ||D H O

Define the transmission and reflection operators as follows, respectively. 9 :< ”_1>9 , o) :<R H>7

By using this solution of Eq.(12), the transmitted and reflected wave field can be calculated as follows.

G\ G\ 1 EJI O [G|I| G0 <GII,I >A| _< > A' m] O |:Gll L |:G||| L (13)
|'+1 e = Tlll(:ID ~D|1D_ BE + |v+1EPv ® RI 0= D’p + BD

<H|‘| > <H| >< > o O || D H—h,l 0 HII,I HIII < |1> % O IID a"IID

The quantities that are used in the next step of computation are the displacement - traction vector

<G|| >¢)u and<G|'| >¢| as shown above.
Hlll1 H||

Transmission and reflection operatorsfor alayer

Consider a layer caught between two half spaces with irregular interfaces. Name it (I)-th layer, the half space
hanging over (I-1)-th layer, another half space lays under it (I+1)-th layer, and the interface between (I-1)-th and
(D-th layersis (I)-th interface (Figure 2).

Up-going incident wave

Define the transmission operator for the upcoming incident wave in (1+1)-th layer and the up-going wave in (I-
1)-th layer, and the reflection operator for the same incident wave and the reflected wave in (I+1)-layer (Figure
2).

~ | ~ iy
ch—l <-|-|U1|+1>q)|+l — <RLi1,|+1>q)l+l-
Consideration on the multiple reflection in (1)-th layer gives the following relation.

T = 1+ (Ro R )+ (REY(RAS + (RE(R T - 6

@ = (Tl ( R )R fﬂ‘fﬂ)q"“ (14)
o - <m>6 <|.+1><a:,|>|+<RD.+1><R:|>+(<a%+l><a:,l>)2+(<aaﬂ><azl>)3+-
0 =R R - (Re R o

A conventional expression is used for the ascending polynomial series in the last member. This gives the
transmission and reflection operator as follows.

(%)= (1% )0 = (REN R D) (1), (R = (R )+ (T2 (R N1 = (R3) (R ) (T )- (29

Down-going incident wave

O
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Define, the transmission operator for the down-going incident wave in (I-1)-th layer and the down-going wave in
(1+1)-th layer, and the reflection operator for the incident wave and the reflected wave in (I-1)-layer (Figure 2).

& =(T5,.,)0 " 0= (R, )0

Consideration on the multiple reflection in (1)-th layer gives the following relation.

1602 (R )8 (1 RE (R )RS + (e RE) + (R RE.) + - )™

R G R G R K _ &
B = (15,0 -+ (R RS+ (R RS+ (e 8. +-Hre )8

5=l (R (RE) ()8

A conventional expression is used for the ascending polynomial seriesin the last member. Therefore,
e ) =2 (1 ) RE = (R)(R0) (7 ) -
) = (T8 = (R (RS (%),

Note that Egs. (15) and (17) have similar structure as those of Kennett (1983).
Transmission and reflection operator for stratified media

Repetition in similar way as described above lets us obtain the transmission and reflection coefficients for
irregularly stratified media between the shallowest interface and the deepest (L)-th interface. For upcoming
incident  wave, D= <T1UL >$L+1, o' = (R, >$L+1, and for  down-going  incident  wave,
D= <R1DL >@°, o' = (12 >é°ywhere the distributed force along the (L+1)-th interface that does not exist Ol
denotes the force equivalent to the real source located in (L+1)-layer. This means that the displacement and

traction along the lower face of the deepest interface given by $L*1 is exactly same as those given by the red
source. If this condition is fulfilled, the distributed force along the upper face of the deepest interface &' caused

by & is exactly same as that given by the real source. This distributed force is obtained by solving the
following integral eguations expressed by the integral operators shown below.

EJu||__+1D GLL+Ll AL GLLL =L

P (O
Ao E+<Htf ~ ML o9
The similar procedure as above based on the approximationaL(E) DQL(E),QL(E) DEL(E), EOS, gives
Furt () urt o) - [ GrH e (E)dE + [ GLT (e )o" (§)dg
[ Gt () (€)aE + Ut x)- [, G (o€ (),
DOL+1(XXS)+'[L1XXS J’HLHXf) df+J' HL+1XE)(D()

-
T= [ Ho(é)ot (E)dE +ti(xx,)- [ He (e &)@ (€)de,
In discrete form,

@ULHD L+1D [GL+1D L L+1D H_%LD [G|I__|_D— [th_

s
" s . . [+ o 20
Eottlm LlD_a_'ll__Llﬂ H_”__le a_'LLD LLD 0

The first term denotes the contribution of real source along the deepest interface. Moving all known variablesin
the right member, the following simple formula is obtained.

Gy, -G O®-0_ Cu™0 Hu™0 EGL“LlD CH B GE O

a'h_L”,_ —HLLT%LE Eth+1D+ L+1D_B_ILLT_1D D_a_lLLD H(Zl)

By using this solution, the transmitted wave field can be numerically estimated as follows.

for xOS . (19)
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GII__L>LL <GIL_L> u va 0 G0 Boe [G) O
C)et= T +q>*= LD— Mgt (22)
<HLL,L Hi < LLl %LD LLLD %ILL,LD

Free surface

For the shallowest layer, traction free condition along the surface must be fulfilled. The integral equation
expressed by the integral operator is

(HEo)®" +(H1)®" =0 for xOS, (23)
Define the reflection operator at the surface as ¢° = <|§é’1>$1
The similar procedure as above based on the approximation 61(5) Dml(g),g os, @°@¢)owE) é0 Sé’, gives

£+ [ HE ()00 € - [, HEo (£ )0€ +

(24)
6+ [ Ha, (6 )0 (€)dE - [ HE, (€)% (€)d€ =0 for xS,
Discretization of thisintegral equation gives
&g +HL @0 —H, $°)+ (t'ol +HL,® - Hgﬁl)z 0. (25)
Moving all known variablesto the right member, the following simple formulais obtained.
Hyo®" =5+ 1y, - H3,W - - Hi,w°) @)
By using this solution, the wave field reflected at the surface can be numerically estimated as follows.
1 1 1
(Selat (G B B
Hoo Hoo 1o O OOD H_IO,OD

Displacement at the surface

The followings are derived for the irregularly stratified media having free surface for up-going incident wave.

él = <-|-1%J|_+1>$ . < I'-‘)1|,3|_+1>< F‘()l)J,1><T1%JL+1>$L+l + < Rl,DL+1>< Rtl)J1>< Rl,DL+1>< I%J,1><-I-1SJL+1>$ T

=1 (R N(R) (T o

The last change is a conventional expression just to make the formula shorter. There is not any real boundary at
the depth of the real source, then, <RLDL+1> < > This means that the application of this operator to any distributed

(28)

force vector gives avector of zero. Therefore,

(1) = (R0 - (RecaRo) (i) = (R

(120) = (all = (R(RELA)) (1) = (.)72), @)

(RE.)=(RE) + (R (Rl - (R ><RFL+1>)<TR> (R
-

and

@ =1 - (R (R (1)@ )= - (R (R 8 0

The reflection at the surface is summed by using the reflectlon operator <Ro,1> '
it = (Ch)8° +<e;1>$1 (<eso><Ro )+(ei)r
= ((aio )Ry + (G —(RE Ry (122 o

Approximation

(31)

Eq. (31) shows the way to obtain the full wave field in irregularly stratified media. This, however, includes
infinite sums of ascending polynomials and such complicated calculation as shown by Egs. (15) and (17). One of
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approximations that have to be taken is the truncation of the ascending polynomials. More approximations are
used in order to make calculation easier depending on the target for each problem.

Waves directly coming from the source

If only the waves directly coming from the real source to the surfaceis required, Eq. (30) can be ssimplified more.
The reflection operators for every interface are forced to be zero. <R| |+1> < > <R| |+1> (0). Then,

(T50) = (T (M50 ) ()= (T [Tl

therefore,

R CN AR bl CNCARICN) &y [ @)

We can start the computation from Eq. (21) and Eq, (22). The iterative application of the transmission operator
can be performed by solving Eq. (7) and calculate the wave field by Eq. (8).

Multiplereflection in homogeneous basin

Consider a homogeneous basin staying on a homogeneous basement of different material property. Eq.(31) can
be reduced as follows.

ut = (G20 )R +(Ge )i — (R )RS ) '@

=(<G§,,o><Ro,1 +(GY,) ){I +(RY,) <R0,1>+(<R1?2><Rg{1>)2+(<R192><R51>)3+,,}$1_
The operation °f<R1,Dz> is performed by Egs. (7) and (8), that of <R(‘)Jl> by Egs. (26) and (27). A numerical

example is shown in Figure 3 for the problem solved by Dravinski and Mossessian (1987).

(33)

FURTHER APPLICATION AND DEVELOPMENT

As shown above, the formulation introduced here makes easier the search for a good and efficient approximation
of wave field with a clear theoretical back ground of wave propagation. The computation process is composed of
products of Green's function matrix to force vector, sums among displacement and traction vectors and
simultaneous linear equations. The last one can be solved by using two formers in the iterative methods.
Therefore, there is not any operation among matrices in computation based on the method presented here. This
feature makes computation faster and required main memory smaller. Moreover, it is expected that this alow us
to apply Fast Multipole Method into the calculation. Then, it is expected that the calculation can be accelerated
much more than the present performance.
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Figure 1. Configuration for the wave field in irregularly stratified media (left) and its
reference solution, i.e., the wave field in the corresponding horizontally stratified media
(right). The reference solution is calculated beforehand by the analytical solution in the
wavenumber domain. The reflection and transmission at I-th interface are discussed by this
configuration.
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Irregularly layered media Reference Solution

Figure 2: Configuration for the discussion on the reflection and transmission at I-th layer. The
multiple reflection in I-th layer drawn by curved arrows are taken into account for the
derivation of Egs. (14) and (16).

Figure 3: Examples of wave field calculated the method presented in this paper. These are the paste up of
wave forms for the problem of Dravinski & Mossessian (1987). The columns show the horizontal and
vertical components due to vertical P-wave incidence, and those due to SV-wave, respectively. (Top raw)
shows the directly coming wave plus the contribution of the surface, (middle raw) these plus waves once
bounced, (bottom raw) these plus waves twice bounced.
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