STUDIES ON THE NONLINEAR VIBRATIONS OF
STRUCTURES SUBJECTED TO DESTRUCTIVE EARTHQUAKES

By RYO TANABASHT *
PREFACE

In this paper the writer discusses the resistance of elasto-plastic
structures against earthquake forces.,

It is unnecessary for building structures to be so resistant that no
structural mermbers of a building suffer damage. Rather structural damage
should be prevented which would result in disintegration of those
portions of the building affecting public safety and cause excessive costs
of rehabilitation. OShould the damage be curbed at a level which, even
for the very disastrous earthquakes expected to occur once or twice in a
century, would result in collapse of the structure? This is a matter of
economics, It must be realized that failure of subordinate members could
work actually towards the preservation of the main structure.

To portray clearly the effect of earthquake shocks on buildings, the
dynamic behavior of structures, and particularly of elasto-plastic struc-
tures, when subjected to impressed displacements is of great importance.

No great attention was given to the analyses of nonlinear vibration
problems of building structures until recent years due to the mathematical
difficulties involved. Attention has been paid to the importance of this
consideration by several writers in the past, and included is a paper by
the writer published in 1937 (1).

A brief historical review of the studies involved in this field of
earthquake engineering is presented herein,

HISTORICAL REVIEW AND THE OBJECTIVE OF STUDIES

During the thirty years since the 1923 Kanto earthquake, there have
been several shocks of equal or larger intensity and as a result seismolo-
gists in Japan have been able to develop and maintain intensive study.
Strong-motion seismological records in Japan are too limited, however, to
apply them to our research in earthquake resistant design. Our program to
obtain instrument records of ground motions during strong earthquakes has
Jjust been recently initiated.

From many measurements of the natural period of buildings and other
structures constructed following the building codes of Japan, it has be-
come known that the natural period is usually in the range of from 0.3 to
1.3 secs. It can be stated conservatively from this information and past
experience that earthquake pulses with large accelerations having a
period range between 0,3 and 1.3 secs would be the most undesirable for
building structures in Japan. Therefore, it is assumed that structures
must be appropriately designed for the possibility of resonance.
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This does not mean that the occurence of the so-called "resonance
phenomena™ is the expected behavior of structures during an earthquske.
An important characteristic of earthquake shocks is the difference between
a time series of ground pulses and the sinsusoidal external forces
employed in engineering vibration problems. Earthquake motion$ are
random and every successive ground pulse has an individual period. The
writer believes that the structural engineer must design a structure for
the most unfavorable case which would consist of the structure synchroniz-
ing with a small number of the most destructive pulses in a time series.

Such considerations were outlined in the writer's paper published in
1937 (1). The writer maintained, if the natural frequency of the building
coincides with the earthqusake period, that, "the destructive force of the
earthquake is proportional to the square of the maximum velocity and not
to the acceleration", and further that, "the resistance of the structure
against the earthquake force is proportional to the potential energy
conserved in the structure until failure rather than the measure of the
force safely applied horizontally".

This theory may be expressed in a different manner. For instance,
when an idealized oscillating mass system, m, is subjected to a ground
pulse with a maximum velocity, v, the kinetic energy of the system, T,
is equal to % mv?, The deformation of the system will be maximum when the
kinetic energy transmitted by the shock is fully changed to potential
energy of deformation. In cases where the mechanical properties of the
mass system is elastic but brittle, if the kinetic energy, T, is larger
than the potential energy, L, that can be stored before the destruction
limit of the system, then the system must collapse. However, in case
the system is so elasto-plastic that it can be classified as ductile, the
potential energy stored before the collapse is L + M, where M is the
potential energy of the plastic deformation range, and a larger value of
T compared with L does not always cause collapse, In the latter case, the
destruction of the system depends upon whether the value of T is larger
than that of L + M,

In his paper (1), the writer did not state that collapse of structures
could depend upon the action of only one pulse but that the damage would
be developed by a number of the seismic pulses, At that time, further
research was expected on the characteristics of and the relationship
between: 1. A small number of displacement pulses with a large accelera-
tion value, 2. A large number of pulses with a small acceleration value
and, 3. Pulses of the same period and which appear in succession.

The writer proposed (1) to define the destructiveness of an earth-
quake by the maximum velocity of ground motions. This concept also was
based esentially on the empirical facts that in earthquakes with short
periods every pulse generally has a small displacement but has a large
acceleration, and vice versa.

Such an idea in aseismic design of structures may be translated
generally into the conventional design use of seismic coefficients as
follows: Rigid or low buildings with short periods should be designed
using large values for the seismic coefficient and, on the contrary,
flexible or tall buildings with long periods may be designed to withstand
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lateral forces corresponding to a small seismic coefficient. An example
of this idea would bes

Period of Building Seismic Coefficient, K
0.2 sec 0.5 - 0,8
0.5 0o « 0,32
1.0 0.1 - 0.16

Studies by M. A. Biot in 1943 (2), on the spectrum analysis of earth-
quake motion were appropriate to this concept advanced by the writer in
1937, However, for the numerical determination of coefficients, broad
and extensive investigation of earthquake characteristics is necessary.

The natural period of a building lengthens with increasing height
and it would seem that less hazards would be encountered for structures
with a long period. From our experiences on the 1923 Kanto earthquake,
we have no evidence that tall buildings were more dangerous and conversely
no definite evidence that they were safer. It was concluded by the writer
(1) that, in the future, extensive study was necessary to determine the
elasto~plastic behavior of structural materials. Along this line much
research has been undertaken, and particularly in recent years.

RECENT STUDIES

In 1954 studies were made by mathematical analysis of the dynamic
behavior of building structures subjected to earthgquakes, by assuming that
the period of both the structures and ground pulses were in the same
range (3). The study was an attempt to identify the most destructive
element of seismic waves for structures., For the purpose, an arbitrary
series of constant acceleration pulses, equivalent to complicated patterns
of ground motion, were used. The structure was represented as a continuous
shear beam in one dimension, under the assumption that the structure is
subjected to a shearing vibration wherever the structure is slender.

Under an impressed ground displacement pulse, no important relation-
ship could be found between the maximum deflection of the structure and
the ground acceleration value. It was confirmed, however, that the deflec-
tion grew large whenever the period of the displacement pulses ccincided
with the natural period of the idealized structure. This was so if every
pattern of pulses had a constant mean velocity which is defined as a ratio
of the pulse amplitude to it's half period. When the period of ground
motion apprcached closely to that of the natural period of the structure,
there was little difference in the structural behavior from any arbitrary
pattern of ground motion as long as the mean velocity was the same.

The results indicated that if little difference exists between the
period of structure and the period of pulses, the maximum structural
deflection in a transient state most likely depends on the pulse velocity.

The above analysis shows the appropriateness of the proposed design

curve for the lateral force coefficient, C = K/T , in the Joint Committee
Proposal, ASCE (4).
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Structural materials generally employed in building frames do not
have purely elastic properties but rather elasto-plastic properties.
Many analyses, including that mentioned above (%), have been made assuming
the structure as purely elastic. It can be appreciated that -these results
do not correspond always to actual structural behavior in strong earth-
guakes.

These results would be applicable only when the stresses in the
structure are not large. If it was intended that the structure act
elastically, even in case of strong earthquakes, very large structural
members would have to be provided. OSpecial emphasis on linear analyses
of structures allows no appropriate consideration of the plasticity or
ductility of materials, The plasticity of materials is not only associated
with the ductility (resistance capacity to shock) but also plays a vital
role in energy dissipation.

A large degree of design confidence can be had by an engineer only if
he knows both the effects of earthquake shocks on the structure and the
resistance thereto. In this connection, the analysis of the elasto-
plastic structure to non-linear vibrations is indispensable.

Non=-linear problems, particularly in stationary vibrations, have been
studied intensively in the fields of mechanical and electrical engineering
since the begimning of this century., The advances that have been made
in these fields are almost always concentrated to obtaining responses to
systems acted upon by sinsusoidal external forces or displacements, both
in steady or transient states, in which regularity is recognized, For
this reason these advances and results can hardly be applied to the
problem in the field of earthquake engineering.

Our problem is to estimate the earthquake resistance due to the
ductility of a structure by means of dynamic analysis in which distinctive
features are the restoring and dissipative forces of the system and the
irregularity of the time-varying forces., The non-linearity of the system
is associated with a specific property of elasto-plastic materials which
commonly displays a distinct hysteresis in a wide variety of stress-strain
relationships.

ESSENTTAL EARTHQUAKE FACTORS

Every earthquake record presents remarkable complications due to
peculiar ground characteristics and the restraint of existing buildings.
It is improbable that the pattern of ground motion, as it affects any one
structure can be predicted for future earthquakes, There must be,
however, the one most unfavorable element which has a direct connection to
structural damage among the several factors involved in the time-displace=-
ments curves of ground motion. The determination of this element appears
to be of great importance.

It is possible to substitute, with falr accuracy, a series of
straight lines and/or quadratic curves for the complicated time-displace-
ment curves at very small time intervals, Basically it is convenient
in obtaining the dynamic behavior of structures, subjected to such ground
motions, to use graphical procedures described later or to use step-by-
step numerical computations. A series of constant acceleration pulses also

6-4



TANABASHI on Non-Linear Vibrations of Structures

can be substituted easily for any pattern of seismic displacements, as
shown in Fig, 5.

Special attention is required to clarify the relationship between
the periods of structure and ground, and such factors as the acceleration
patterns, velocity patterns and displacement patterns of the ground motion.

Several types of elasto-plastic structures considered in this paper
have been analyzed subjected to the following types of pulse series with
a variety of time durations:

1. Quadratic displacement pulses of a constant acceleration.

2. Quadratic pulses of 2 constant mean velocity ("mean velocity" is
a ratio of the amplitude of pulses to the corresponding period).

3. Quadratic pulses of a constant displacement (a constant amplitude).
PRELIMINARY EXPLANATIONS

The results of the analyses are given later in the paper. A prelimi-
nary discussion of procedure is presented.

Structural Characteristics.

In general, the dynamic analysis of an n-story framed structure is
simplified and is made by assuming the structure as a system of n-degrees
of freedom. However, the elasto-plastic dynamic restoring forces of the
system have wide variety dependent upon such factors as the construction
material, wall openings and partitions and the quality of workmanship,
and will differ from the statical restoring forces, The dynamic elasto-
plastic restoring force features were assumed to have the characteristics
as shown in Fig. 1 (1). The effects of variety in such elasto-plastic
restoring forces have been studied to show their consequent influences on
the dynamic behavior.

Fig., 1 shows the responses of single-mass systems with differing
restoring forces characteristics, namely, pure elastic, elasto-plastic and
ideal-plastic. The single-mass systems were subjected to a series of
ground pulses of constant period coinciding with the initial pericds of
the systems. There is little difference between the dynarmic behaviors
corresponding to Figs. 1 (1) and 1 (2). As noted, some slight modifica-
tion in the restoring force curve shows little influence on the dynamic
behavior of the structure. Consequently, for simplcity, the restoring
force diagram was assumed to be ideal elasto-plastic,

Consideration on the Continuity of Earthquake Shocks.

It is felt in elastic problems that when the periods of the ground
pulses coincide with the natural frequency of the structure, the structure
is liable to severe damage. Is this presumption also true in the case of
non-linear behavior of elasto-plastic structures? In Fig, 2, it is
noted that after the yield point stress is exceeded, the period of the
system elongates and the amplitude of oscillation remains constant due to
energy dissipation., From Fig. 2, it is to be noted further that for an
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elasto~plastic system, if the yield point stress is exceeded within one
cycle of oscillation, this maximum deflection of the system is maintained
regardless of the number of succeeding pulses,

Some seismologists feel that a small number of pulses with large
amplitude appear repeatedly in the secondary wave (distortional) of
destructive earthquakes., After a system has become non-linear, subsequent
ground motion of intensity equal to or less than in previous pulses will
not develop larger deformation due to energy dissipation from a hysteresis
of restoring force and to period elongation.

From results of these initial studies, the ground motion has been
simplified for use in analysisi; and as representative of this motion, a
quadratic displacement pulse pattern is considered,

RESULTS OF ANALYSIS

Figs. 3 and 4 show the time-displacement curves for each of the two
levels of a two-mass system acted upon by an acceleration pulse and a
displacement pulse with a duration of one period of the system.

In an attempt to clarify the most decisive factor in the effects of
the displacement pulse on a structure, a number of the dynamic behaviors
of elasto-plastic one-mass systems are compared with each other in regard
to variation both of the acceleration values and the durations of the
pulses.

Fig. 7(a) presents the time-displacement response curves of an ideal-
plastic one-mass system subjected to four kinds of displacement pulses
having the same acceleration value but different durations.

In Figs. 7(b), 7(c), 9 and 11, the response curves of one-mass systems
having specific elasto-plastic behaviors are presented. In this case,
every displacement pulse has the same mean velocity.

Figs. 8, 10 and 12 are the time-displacement response curves of
one-mass systems corresponding to several different kinds of ground pulses
having the same amplitude.

In these figures, the number of each time=-displacement response
curve and of the corresponding elasto-plastic behavior of one-mass
systems shows that the duration of the ground motions are:

l. Two times the period of the system,
2., One and a half of the system period.
3. A full system period, and

4, A half of the system period.

CONSIDERATIONS AND CONCLUSIONS

The ability to estimate the most decisive factor of ground shocks
affecting a structure and leading to possible collapse would be most
significant, In an attempt to evaluate ,this most destructive damage
factor, the influence of displacement, velocity, acceleration and period
of ground shocks are considered.
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From the time-displacement response curves shown in Fig., 7(a) of a
one-mass system acted upon by impressed displacements of identical
acceleration value but with various durations, it is noted that the maxi-
mum deflection of the system increases with increasing pulse duration.
Fig. 7(a) presents the case of an ideal-plastic system onlyj; but some
difference in the elasto-plastic behavior of the system does not affect
the general trend shown,

Figs. 7(b), 7(c), 9 and 11, indicate that as the period of the
impressed displacements approaches the natural period of the systerm,
larger deflections are effected.

Figs. 8, 10 and 12 show the existence of an apparent peak of the
amplitudes of each dynamic behavior when the period of the impressed
displacements coincides with the natural period of the system. It is to
be noted, however, that if the system is acted upon by ground pulses of a
period less than that of the system, then the response of the system
is affected by the amplitude of the ground motion.

From the results of the analysis, it may be postulated that the most
destructive element of earthquake motion on a structure is dependent on
the ratio of the period of the ground motion to the period of the structure.
If the ratio is far less than unity, namely, the period of ground motion
is far less than that of the structure, the most destructive element is the
displacement value of a dominant pulse. When the ratio approaches unity,
the most destructive element is associated with the ground velocity. Only
when the ratio is far above unity, will the acceleration value of the
ground pulses be the most destructive element.

Thus it may not be a rational procedure to follow the building code
requirements of this country which assume the structure is subjected to
constant accelerations.

Based upon the range of the period of both the ground motion and the
structure, it is concluded that a more logical design basis would be:
a. Short period structures should be designed for constant accelerations,
b. Structures with medium period ranges should be designed for the
constant velocities, and c. The longer period structures should be
designed for constant displacements.

As a result, the writer proposes that lateral force coefficients for
structures with a height H, and at a level y, should be determined by use
of equation 1.

. Y

K =K o727 ceeeees (1)

where Y is the height to y above the base and K,, is the coefficient as
shown in Fig. 6(a) to be determined for varying periods, Ty , of strue-
ture. Fig. 6(b) shows an identical relationship for XK with varying
frequencies, F, of structures.

This lateral force coefficient is not to be used with conventional
building codes but for that design procedure which considers the elasto-
plastic properties of the structural materials. The estimation of the
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real resistance of structures to earthquake shocks should be based upon
the dynamic analysis of elasto=plastic structures subjected to strong-
motion earthquakes.,

On the basis of results obtained thus far, the writer believes that
further research along these lines will lead to the development of more
useful design procedures.

STEP-BY-STEP GRAPHICAL PROCEDURES

For the analysis of linear vibration problems, it is well kmown that
the responses developed in the multi-mode "elastic" system by arbitrary
base motion can be developed by superposition if we know the response
due to an impuse. In the case of the analysis of non-linear problems,
the preceding method of superposition loses its validity., Therefore,
such methods that make use of the torsion analyzer or the linsar analog
computer will not be applicable to the analysis. Thus, there are no
procedures now available for the purpose except step-by-step graphical
constructions or lengthly numerical computations.

The non-linear vibrations of building structures have been studied
in the behavior of idealized single-mass structures for which case the
differential equation of a one-mass system subjected to a ground motion
can be written as shown in Eq. 2.

mix + f(x,%;t)=-mX ceeeene (2)

where m = idealized single mass
f = non-linear restoring and dissipative forces
X = distinct ground displacement, and
x = relative displacement of the mass with respect to the
ground

Graphical sclutions of Eq., 2 are obtained by either Messner's method
or the Phase-Plane-Delta method (6 and 7). These methods, however, have
been applied generally to one-mass systems., An attempt has been made to
extend these methods to multi-mass problems to be used in our studies.

For the sake of simplicity, it is assumed that the nonlinear system
has two masses (my, mp), two restoring and dissipating forces (fy, f5),
and their coordinates (xl s xz) s respectively. Consider the differential
equation of motion

{ m,i,+f,(£;)‘fz{(xz—x1)}=_m")"( cesness (3)

ijZ + f;{(xz‘x1)f=-‘m2x eeccoce (4)
which can be written

M+ Fi(xx) =~ X = My(X+X)  eeevenn (5)
m2(jt2‘-i')+ﬁ{(~xz“x/)}=‘m25(‘m2i', ceeeees (8)
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1. Extension of Yeissner's Method to Two-mass Problems.

Transform Eqs. 5 and 6 into

{ mlil+kxl= ﬁxl ‘ﬁ(xl)—(m/"'mz))“(—mz{(iz_ x.l) +x/} vessens (7)
mz(.X2-i.[)+k(.x2—XI)=%(X2~x1) +]g{(‘rz—x'l)}-—m2>“<-mzil. veeess (8)
Introducing the guantities

{ LL/zplt’ lb/z/k/m , xl= %I esscace (9)
u:=pt, P=V%’/m X=X =

Egs. 7 and 8 become |
{ Gt 9= F&f?f(%)}‘(fé}'*)@l‘j)x“( :+%,£7 veeeees Q1)
%”L 1.~ { 92 ?é'f»l%)}* (X/p:) + %'(,D,’/pzz) ceeenns (12)

Thus, f.'rom Egse. 11 and 12 graphical solutions of gy and go are obtained.
Accordingly, two construction planes are necessary.

%, veree.. (10)

) Supp?sing that the structure is at rest at time zero so that the
initial displacements, x; and x5, are zero, respectively, then the initial
conditions are

[-X = X2 )4y ceeennn (13)
[_>..( = j;,:_— .Z;’plz_;.%;'/o;]t___o ereseee (14)

at the time Eq. 11 becomes

%+ Y= {9~ éﬁ(%)}—(x/pf) cereres (18)

Then, a part of the solution corresponding to the short time interval
from zero to dt is given as the first step of the construction. By
Meissner's method, the vealues of the displacement, qj, and the acceleration,
q}, at the time dt are obtained simultaneously, so that the value of aY can
be put into Eq. 14. Thus Eq. 14 is written as follows, and we get a part
of the solution of this equation for a short time interval, O -- dt.

" = L —(X " y 2)
A A A ACA G 7 R C ARG ) T
As the second step of construction, setting both values of (q']'.)lst.
and (qg)lst into Eq. 12, we obtain new values of q; and qf.

or

An alternate application of Egs. 1l and 12 gives the step-by-step
graphical solutions of elasto-plastic systems corresponding to an un-

stationary state.

In Figs. 3 and 4, there are shown the examples obtained by this
method when my = mp = m, and £f1 =1, = f.
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2., Extension of the Phase-Plane-Delta Method to Two-mass Problems.

Egs. 5 and 6 are rewritten in a form of the Phase-Plane-Delta
method as follows:

{ X, +pillx +8:1=0 s (17)
(X~ + P2 [(G-2) +&T=0 e (18)

where .
{ A‘/=’é'[ﬁ(x/)~k:c/]+%<f—%’(¥+‘JC:), P2={6/m,
8=l A0l fOxl+ 22X 4x),  pi=F/,

Eqs, 17 and 18 show, respectively, the general form of the delta method.
To simplify these equations, we let m; = mp, = m and

{ X+ plx+81=0 cereen (19)
(X=X + LX)+ 81= 0 ceeenes (20)
where . ) .
{ Slzé—[f/(x/)'kx/]'f'%'i‘%% L ceeeees (21)
82='f—é'[]§{(xz‘xl)f‘fé(xz“x/)] + ‘>p<‘z + ‘%Z’/' """" (22)

These gquations should be solved sixpultaneously on the two phase-planes,
(x1-= X1/p) plane and (xp -x7) -- (X - %7)/p plane, by means of the step-
by-step method. The initial condition is also given as follows:

‘ [-X = letso ....... (23)

From Eq. 21, the center of the circle describing the initial motion on
one phase-plane (x;-- xl/p) is locate at §,, on the x,-axis,

S =_,é‘[ fl(x/)"kX/] + “,%('i - eeess 1st step

Secondly, Eq. 19 can be written %—5’ =-[x+ p]

8= 2 E -0} # - x,))

X . aq  seeee 1'st step
and so * 753 - [I’ * 8" ] Ist step
8n= "{é[ff(ll)' %XI]*' g'p%( - ”(Ilzn_”th 3;3"(”") }

eesse N=th step
H

+(x,- +
{(xz xl()nf-/)tﬁskpgz'm—[)

£2~n= ‘é’fﬁ{g{xz"'x/)}'k(xz"xl)] eesss N'th step
+ —ﬁ - [(I,)n”, slep + 8/41]
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Thus, the phase trajectories of x, and (%, -x7) can be obtai
§ucce§s:we repetition of this pro%ess. Ag th;[s method is ess:it?;lly
identical with the extension of Meissner's method, it is natural that
both methods introduce the same solution as shown in Figs, 3 and 4
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NOMENCLATURE
Tnit
8. = Phase plane displacement _ cm
F. = Natural frequency of vibration of a building
structure /sec
f£. = Nonlinear restoring and dissipating forces kg
cm

H, = Height of building
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Unit

= As a subscript, refers the symbol to its appropriate
floor of building None
kl' = Lateral force coefficients Nane

= Spring constant at initial state of oscillating system kg/cm

= Potential energy stored in idealized oscillating system

up to elastic limit of deformation of the system kg-cm
= Potential energy stored in elasto-plastic system,

corresponding to plastic state kg-cm
= Mass kg-sec®/cn
= Circular frequency of oscillating system at its

initial state rad/sec
= Displacement defined by Meissner's graphical method cm
= Kinetic energy of idealized system subjected to ground

motion kg~-cm
= Natural period of vibration of a building structure sec
= Relative velocity of the mass with respect to the

ground cm/sec

Distinct ground displacement cm

= Relative displacement of the mass with respect to
the ground cm

= Height of level at y ahove the base of building cm
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FIGURE CAPTIONS

Displacement curves, of one-mass systems, of each specific
elasto-plastic behavior due to quadratic displacement pulses
of the foundation translation.

Displacement curves, of one-mass systems, due to impressed
quadratic displacements of a long duration,

Displacement curves at each level, of a two-mass system, due to
a constant acceleration pulse of the foundation translation.

Displacement curves at each level, of a two-mass system, due to
a quadratic displacement pulse of a duration equal to the
natural period of the system.

Ground motion patterns and an approximation of these patterns.

Lateral force coefficients for buildings.

(a) Relation between fundamental periods, T,, and the coef-
ficient, Kl.

(b) Relation between fundamental frequencies, F, and the
coefficient, K,.

7(a) One-mass system. Comparison of the displacements due to quad~-

ratic displacement pulses of the foundation translation, with
an equal acceleration value but of various durations.

Figs. 7(b), 7(c), 9 and 11. Several elasto-plastic behaviors of one-mass

systems. Comparison of displacements due to quadratic dis-
plscement pulses with an equal mean velocity.

Figs. 8, 10 and 12. Several elasto-plastic behaviors of one-mass systems,

Comparison of displacements due to quadratic displacement
pulses of an identical amplitude.
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