ASEISMIC DESIGN OF SIMPLE PLASTIC STEEL STRUCTURES
FOUNDED ON FIRM GROUND.

by M. RODRIGUEZ C.*
SYNOPSIS

A probabilistic method of aseismic design of one-degres of freedom
plastic steel structures without damping and founded on firm ground is
presented. The method is based on a statistical analysis of responses of
such structures to idealized fictitious earthquakes essentially similar to
true strong motion temblors. It is shown that the probabilities of failure
through excessive deformation are smaller for ductile structures than for
analogous elastic structures subjected to the same earthquakes.

ASSUMPTIONS
This paper is based on the following assumptions:

a) Structures considered have one desgree of freedom in a horizontal
direction, Fig. l.

b) The mass of the structure is concentrated at the heads of the
columns supporting it.

¢) There is no damping in the structures under consideration.

d) The material of which the structure is made has a stress—strain
diagram of the type shown in Fig. 2.

e) In any bar of the structure subject to bending plane sections
orthogonal to the axis of the bar remain plane.

f) The stress—str;in diagram in bending is the same as the stress-
strain diagram in tension or compression.

g) The ground upon which the structure is founded has a stiffness
comparable to that of sites at which reliable earthquake'accelerograms
have been recorded.

h) From the viewpoint of aseismic design, an earthquake may be
idealized as a series of instantaneous changes in ground velocity
distributed at random both in time and magnitude, Fig. 3.

The last hypothesis is due to G. W. Housner.
CHARACTERISTICS OF PROPOSED IDEALIZED EARTHQUAKES

A set of 19 fictitious motions, essentially similar to true strong-—
motion earthquakes, were constructed . They were assigned the following
characteristicss:

a) The magnitude of each pulse is small compared to the sum of the
magnitudes of all pulses.
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b) The magnitudes of the pulses are distributed in time and according
to intensity, in three phases of which the second one is the most intense.

c) The algebraic sum of all the pulses is zero (at the end of a true
earthquske the ground velocity is zero)-

d) The duration and sign of the pulses are chosen at random.

Constant pulse magnitudes were used in each phase. This idealization
does not materially alter the statistical behavior of structural responseé

DYITAMIC BEHAVIOR OF SIMPLE DUCTILE STRUCTURE

Consider a structure of the type shown in Fig. 4 under the action of
a lateral force F of varying intensity. Let Sobe the relative displacement
in the columns of the structure before applying F, and & the relative
displacement at any instant measured from the initial position of
equilibrium. It will be assumed in this paper that diagram (F,8) is
similar to that of Fig. 5.

It can be shown that the value of F causing yielding in the columns

is __24EIA (1)
e
and that the value of A\ when yielding begins is
0—51 2\
A=—ZFT- ' (

RESPONSE OF SIMPLE DUCTILE STRUCTURE TO IDEALIZED EARTEQUAKES

It is well known that a structure of the type considered may be
idealized as a mass, equal to that concentrated at the tops of the
columns of the structure, supported by a spring with the same force-
deflection diagram as the (F,8) curve, Fig. 5, of it.

Consider the motion of the mass depicted in Fig. 6 during the
interval t;4t £ t;,, between to successive pulses of the idealized
earthquake. “ Two cases are possible: a) Elastic behavior 1fl$-5'l_A and

F = k& . b) Plastic belavior if|8-§PA and F =kA .
Case a) Elastic Behavior.

From Newton's second law of dynamics,

mxX=-k3, (3)
which after integration and proper arrangement gives
g =Acosp+B)+§, (%)
where &
pA"‘smp s tan pb— W C=t—'t‘i (5)! (6)! (7)

From Eq. (4) it is possible to obtain
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&%+ (pg-pd)f=p*A (8)

which in a coordinate system (pg,§) represents a circle whose center is

at (p& ,0) and whose radius is pA, Fig. 7. It is evident from Eqs. (5)

and (6) that pA depends only upon the initial conditions of motion at
instant t; , as represented by point Q; in Fig. 7. It is easily seen

from Eq. (4) that point Q;,, represents the state of motion of the mass

at instant t;,, , and that any other point Q between Q; and Qin represents
the state for 04 C Lty sty or t,4t4 ty,.

i+l

Case b) Plastic Behavior.

Suppose that at instant t, within the interval t;4tZ t;,, plastic

yielding starts in the spring. From this instant on, force F in the
spring has a constant value, F = kA, and Newton's second law gives

m;c:-——KA, (9)

which shows that motion of the mass m has constant acceleration and hence,
after yielding occurs in- the spring mass m no longer vibrates.

Integration of Eq. (9) and proper substitutions give

=- 4po+ 4T+, (10)

where ..
zat-t,, pz.._iﬁi. (11), (12)

From Eq. (10) it is possible to obtain
£ - zpA [pg —(]9§A+ é:/sz)], (13)

which in a coordinate system (pg,£) represents a parabola whose axis
coincides with the pg— axis, whose vertex is at(pg,+£2/2ps, 0)and which
opens towards the left if ANO, Fig. 8. It should be observed that this
parabolu does not depend upon the state of motion of the mass m when
plastic yielding starts in the spring. In fact, if in Fig. 8 the origin
of the coordinate system is shifted to O' and if (pg)' denotes the new
abscissas, Eq. (13) becomes,

&%= -zpA(pE), (%)

which clearly shows that the parabola which it represents depends only
upon the product pA for the dynamic system under consideration. There-
fore, in the graphical method of dynamic analysis which will be described
later, it is only necessary to draw a parabola for a given mass-spring
system when it is subjected to a fictitious earthquake.

From Fig. 5 it is concluded that plastic behavior of the spring
will cease at ingstant t; when 8 gtarts to decrease, i. e.,when & attains
a maximum or £ vanishes. The state of motion is then represented by the
vertex of the parabola, Eq. (14). After this state is reached the struc-
ture will behave elastically again. The duration of the plastic behavior
is tyu - ta If bty d by, or iy ~t, if £,3%;,, . In any case, this
duration can be computed from Eqs. (11) and (12).



ANALYSIS OF STRUCTURAL RESPONSE

Mow if the mass-spring system is subjscted to a fictitious idealized
earthquake, the method discribed above permits the determination of the
state of motion at any instant using the following procedure: curve (rs,g)
ig drawn for the first time interval, between the first and second pulses,
starting from point O representing the state of rest of the system. Next,
curve (pe,&) is drawn for the second time interval, between the second and
third pulses, starting from the state reached at the end of the first
interval, and so on. The diagram resulting from this construction is known
as "gyrogram". The maximum value of p can be obtained from this. Fig. 9

is an exsmple of a gyrogramcq‘“)-

DATA FOR STATISTICAL ANALYSIS

In order to obtain data which could perrmit the use of statistical
methods, a set of 19 idealized fictitious earthquakes were constructed,
and the maximum value of pg that they produce in one-degree of freedom
mass~spring systems of natural periods 0.2, 0.4, 0.6,... 4.C sec, and
different values of A found from the graphical construction described
above.

STATISTICAL ANALYSIS OF DATA OBTAINED

Data obtained may be regarded as coming from observations of the
sffects of true earthquakes on certain systems representing real
structures. Therefore, it is necessary to treat them statistically to
arrive at general conclusions.

Let A be the event defined by: "pX exceeds pA", and B the event
defined by: "pX exceeds pX,". We can then say that the sample space of A
consists of all values of pXN\ pl, and that the sample apace of B consists
of all values of pX N pX,. Therefore, if AB represents the event: "both A
and B occur®, its sample space will consist of all values of pX N\ pX,NpA .
Finally, if BlA represents the event: "B occurs when A has occurred", it
can be shown that® (.

P(AB)=P(A) P(BIA) (15)

Since event B implies plastié behavior of the structure , Eq. (15) should
be written

R(AB)=RAIRBIA (26)

On the other hand, if we had elastic behavior even after pX exceeds
pd, the probability of AB would be P, (AB). Henee the ratio

R (AB)
EGE a7)

will describe the influence of plastic behavior of the structure.

I+ has been shown@i&that, approximately,

RW=R(p)=2F )f erfe DT £2- (18)
Ry - @LrOVT pXg
R (AB)=R(PXz)ox \ pa = 2 Eo(ﬂ)"erfc — (19)
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where E, =E(pXe) =vzuf (20)
Then, in order to compute (17) we have to determine E, (BlA).

As a first step two variables were formed

x=t s y=Ll, (21), (22)
in whichw‘m“a} , z 2
2 (=0 -T2+ (PA
Ez’[E(PX’-)]pxepr =%El = 2i:-| e~ % (&Y (‘PE) ‘ (23)

Points of coordinates (x,y) were plotted in a graph that suggested the
possibility of representing the expectation of y for a given x by a
function of the form

E(ylx)= o +px~ (24)

where & and p are constants. To verify this, values of x~! were grouped
in intervals, means (X5 ) of (x*,y) for each interval were computed and
points (x”,¥) were plotted. As the points in this graph lie approximately
on a straight line, Eq. (24) holds and the problem now is to compute o
and B .linear regression analysis (®) can be applied, but we have to make
a hypothesis about the form in which the dispersion of y for a given x
varies. Therefore, coefficients of variation @Gofy weére computed in all
intervals and compated. It was found that it could reasomably be assumed
constant throughout the range of values of x at hand. Accepting this and
using Markoff's theorem of Iinear regression analysis, the following
result was found

E (pX,/E,)= 0.3455 +0.9823(E, /bA);" (25)
from which . :
E(pX,)=03455E, +0.9823 pA © . (26)
Now to obtain the distribution functison of pXP,‘bhat is, the '_f‘fichion
F, (BIA), a new variable was formed ¥
8== RN | (27)

After the values of @ had been computed, they were grouped into adequate

intervals and the frequeney of the values of 8 greater than the upper

limit 6, of each interval were determined using the relationship’ )

Number of values of 6> 6y g

6300 =T numberofvallesof 8 =~ . ,(28)

The frequencies thus obtained are estimates of the probabilities that

6 N 6, - It remains now to fit a distribution function to the computed

frequencies. After several trials the form

X 9(8) 2 iy , v
P(E—T?P;y >9)=—12r,-§0 e Vdv =serf 9(6)3 4 - (29)

with
g(8) = o (1+0) " pAO, L (30)
ocand (‘5 being constants, was found convenient. It should be noted that
functions (29) and (30) satisfy the following conditions | .
- a) If 9>00, g >0 ard erfq(o)—>0, o (31)
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b) If xx4 and 8+ 0, erf g(@)=> 1, (see Ref.9) (32)
Therefore furction (29) can be accepted as a form of di§tribution .
function.Moreover, a plot of log (1+6) vs log g(8) gives a straight line
approximately. Computing constants o and [5 by the method of least squares

then gives ~Jo.
Py > 8) = erf [er0cer™ ] (33)

To test the goodness of fit of distribution function (33) to the
frequencies computed, the X’~test was used. The amplitudes of the
intervals of variable © were modified so that sach contained more than 5
values of pXP/ E(pXP). The total number of these intervals was k = 15.
Now the number N of values of pX, / E(pXp )zwithin each interval was
computed using Eq. (33). The ratio (N = n) / N was computed for each
interval and its sum obtained for all intervals. The number of consta.?ts
estimated in Eq. (33) is ¢ = 2; then the value of fractile 0.95 of X
with f=k = ¢ = 1 =12 degrees of freedom is found ® to be

X5 gs =210, =12 (34)
Hence 2 !
Z_(_N_gﬂl. = 17.79 L 2.0 (35)

and function (33) is statistically adequate for the range under
consideration.

From Eqs. (33) and (26) it can be written

X '
P(Eﬁ’;xp ;P;P))= PpXp2PX,) = B (BIA) (361
' - ) X -10.8
Pp(BIA) = erf[mo (‘ + 03a55E, t 5823 pA) j (36)

Now sirnce

[F;(B‘A)Jpx,=pA =1 (37)
and expression (36), which implicitly has assumed this fact, does not
give 1 for pX, = pA, it is concluded that it is necessary to apply a
correction factor to expression (36),that takes into account the specific
valus of pA in each particular case, to obtain B (BlA). From condition

57) .
. B (BIA
BlA) =& 8
AR I CI7y yt (58)
Substituting (38) in (16) when pX, = pA there results
R (ABJlox = pa = R (A) (39)

as 1t should be according to the physical conditions involved.

Egs- (18), (19), (20), (23), (36) and (38) permit the computation
of expression (17) for a given value of pA and a given value of E
which, according to Ref. (7), can be considered as a measure of the
intensity of the earthquake, and is given by (20).

It is difficult to show in the general case that for given values of
pA and E, » tke ratio (17) is lower than 1. However, it is possible to
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verify this numerically. Table 1 constitutes an example thereof.

From the foregoing discussion it can be concluded that plastic
behavior is beneficial in the sense that, given a certain structural
response, the probability of its being exceeded is lower than the
corresponding probability in the case of purely elastic behavior.
Conversely, for a given probability of failure, responses of ductile
structures are lower than those of perfectly elastic systems.

PROPOSED METHOD OF DESIGN
The following method of design is proposed:
a) Choose trial section of columns.

b) Establish the maximum relaiive displacements in the columns
which may be allowed, pX,, according to functional requirements.

c) Compute pd .

d) If pX, £ pA,the structure should be designed by the probabilistic
methods described in Refs. (1), (7) and (8).

e) If pX,> pb, plastic action is allowed in the columns of the
structure and the following steps are necessary.

f) Ascertain the earthquake intensity, E,, for which the structure
should be designed, from the records of earthquakes and from past
structural experience in the region where the structure is to be built.

g) Fix the probability, P (pX_ ), that pX, be exceeded for the
value of E, chosen, according to these factors: type, nature and
importance of the structure, damage that its failure would cause, etc.

h) Compute the probability Pp (AB) with the known values of pA and
E, , using expressions (16), (18), (23), (36) and (38).

i) Compare P, (AB) with P(pX_). If P,(AB) £ P(pX,), the design is
safe. If P,(AB) >.P(pxd), the deslgn errs on the unsafe side.

It should be noted that apart from steps (f) and (g), which require
a great deal of experience, the rest of the method involves simple
computation.
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§ , relative displacement.- p,¥k/m in a mags-spring system.



ANALYSIS OF STRUCTURAL RESPONSE

BIBLIOGRAPHY

(1) "Aseismic Design of Elastic Structures Founded on Firm Ground", L. E.
Goodman, E. Rosenblueth, N. M. Newmark. Proc. ASCE, Vol. 79 (1953),
Sep. No. 349, pp. 349-13, 349-15.

(2) Wseismic Design of Simple Plastic Structures Founded on Firm Ground"
(in Spanish), M. Rodrfguez C., Thesis for the degres of C. E., U. of
Mexico, 1954.

(3) "Influence of Ductility on the Response of Simple Structures to
Earthquake Motions", S. L. Pan, L. E. Goodman, N. M. Newmark. Tech.
Rep. to the ONR, U. of I1l.,1951.

(4) "Introduction to the Theory of Probability and Statistics®, N. Arley
and K. R. Buch, John Wiley and Sons,  1950.

(5) *An Introduction to Probability Theory and its Applications", W.
Feller, Vol. 1, John Wiley and Sons, 1950.

(6) "statistical Theory with Engineering Applications", A. Hald, John
Wiley and Sons, 1953.

(7) "Aseismic Design of Simple Structures" (in Spanish), E. Rosenblueth,
Ediciones ICA, serie B - No. 1C, 1952.

(8) "Aseismic Design of Elastic Structures" (in Spanish), E. Rosenblueth,
Ediciones ICA, serie B - No. 13, 1952.

(9) 'Aéshort Table of Integrals", B. 0. Peirce, Ginn and Co., 1929, pp.
116 - 120.

NOMENCLATURE
E(X), expectation of X.
El, expectation ofpXe
E,, expectation of pX. for values of pX, greater than pA .
P_(pX,) , probability that pX exceed pX, in the elastic range.
E;(pxa) s probability that pX exceed pX, when there is plastic action.
X, > maximum value of § in the eiastic range.

X maximum value of g in the plastic range.

e
-

A , yield elongation of the spring in a mass-spring system.
g

s relative displacement.- p,Vk?m in a mass-spring system.
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TABLE 1
K> 5| 3, /0%, | B GIA) | B GIA) | 3 (0 | 2 (02 | SRS
10 0.844 0.795 1.000 | 0.4190| 0.419 1.00
12 1.015 0.365 0.456 | 0.1911| 0.265 0.72
14 1.182 0.157 0.196 | 0.0821} 0.158 0.52 .
16 1.353 0.068 | 0.085 | 0.0356 0.089 | ©.40
18 1.522 0.033 | 0.041 | 0.0172| 0.048 | 0.36
20 1.691 0.018 | 0.024 | 0.0106| C.029 | 0.36

pd = 10 cmesec™

E, = 10 cmesec™

E, = 5.860 cm-sec™
E(px,,?: 11.845 cu=sec™
P.(A) = 0.419

15-9
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FIGURE CAPTIONS

Typical one-degres of freedom structure.

Assumed stress-strain diagram.

Idealized earthquake.

lateral force F acting on a simple structure.

Assumed force-displacement diagram of simple structure.
Simple mass-spring system.

Graphical representation of motion in the elastic range.
Graphical representation of motion in the plastic range.

Example of a gyrogram.

15-10
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motion in the elastic range.
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