DESIGN AND ANALYSES OF TALL TAPERED
REINFORCED CONCRETE CHIMNEYS SUBJECTZD TO EARTHQUAKE

By Nelson M. Isada %, Ph.D.

0. INTRODUCTION

The object of this paper is to summarize ratimal and workable rules to
follow in the design and dynamic analyses of tall tapered reinforced con-
crete chimneys on rigid foundations as determined by earthquake stresses.
The structursl properties of three chimneys designed in the United States
are used.

The study is divided into three major phases. The first involves the
accumulation of accelerogram records and experimental results on the coef-
ficient of damping. The second phase is the series of dynamic analytical
studies which includes the derivation of the dynami¢ equations, fundamen-
tal mode structural properties, second and higher modes structural proper-
ties, solution of the generalized co-ordinate differential equations, de-
termmination of the maximum shears and bending moments, and determination of
the magnification factors which are compared to the ACI (49-26) Code. The
third phase is the determination of the suggested design formulas.

I. ACCELEROGRAMS AND DAMPING COEFFICIENTS

From the work of Alford, J. L., et al, (1), on "spectrum analyses", it
is decided to use three accelerogram records. The first accelerogram cho-
sen is the record taken at El Centro, California, on May 18, 1940, with N-S
component. This accelerogram takes care of the localities where the maximum
acceleration recorded is 0.09g or more. The second accelerogram chosen is
the record taken at Vernon, California, on October 2, 1933, with NO8S8E com~
ponent. This covers localities whose recorded accelerograms show maximum
accelerations of from 0.05g to 0.09g. The third accelerogram chosen is the
record taken at the Los Angeles Subway Terminal on October 2, 1953, with
N39E component. This accelerogran covers lecalities whose accelerogram
records show maximum accelerations of less than 0.05g.

Hisada, T. (2), Merritt, G. (3), White, M. P. (4), and others have
studied and performed experiments to determine the velues of the coefficient
of damping. From their studies it has been concluded that 5% and 73% of
critical damping for each mode should be used in this study.

II. DYNAMIC EQUATIONS

The lateral vibration of a beam is analyzed (5) with the following as-
sumptions: '
(1) The cross section of the beam is small compared to its length so
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that the effect of shear and rotary inertia on the configuration of the beam
may be neglected.

(2) The beam is elastic.
The beam equations belew are found in books on mechanics of vibration (5)%:

2

51%’?‘57 =2~M S e (2.7)

5?(51%52)"?5"”‘/; .......... (2.2)

g2 3% o

St~ -2 oW, (2.3)
where

E = Young's modulus of elasticity,

I = moment of inertia,

x = distance from base to a general point P on neutral axis of bending,

¥ = lateral displacement of neutral axis of bending,

M = bending moment,

V = shear,

W = load per unit length.

If the beam is vibrating, the load per unit ‘length W of eq. (2.3} is
the inertia force per unit length. By Newton's principle the load per unit
length is 2 z

w=-229 _ _,2%

= j Y3 at’- , ...,..,.(Z,4}
where

w = weight per unit length,

t = time variable,

m = mass per unit length along the beam.

Substitution of eq. (2.4) into eq. (2.3) yields

dz. »az 2%
m(f[ﬁ):—mgﬁl ...... « .. (2.5)

which is the general equation for the free lateral vibration of beams with-
out damping.

Now consider the case when there is ground motion, say during an earth-
quake. Let

vp(t) = motion of the base,

Yx(t) = horizontal absolute motion of the xth point along the neutral

axis cof bending of the beam,

¥x(t) = motion of the xth point relative to the base.
Thus,

Kece) =gty s g ). co.(2.6)

Since the inertia force in eq. (2.5) is based on absolute acceleration, eq.
(2.4) becomes

d& ?Z 2 2 /32

AT Er2Yy. - prly T4
dxz(f 2x?® m(’atz > 2t? ) (27)
Lagrange's equation (5) is used to reduce eq. (2.7) into a different form.
This equation for free vibration is

* This and subsequent numbers in parenthesis refer to the bibliography.
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dt( )"‘iz-f-?—g"‘—'o, s - (2g)

G 2g. 2g.
where ;} ;‘/ Z—/
T total kinetic energy of the whole system,
= jth generalized co-ordinate,
U = total potential energy of the whole system, which is a function of
the configuration of the system only,

s dE
N let oA ‘
ow, 1€ e ..(z_7}

73 = 23(x)qj(t)
be a solution of eq. (2.7). Superposition of all possible solutions gives

the gene ral solution

q = Z ,,Lg} - (2.10)
Therefore, the expression for the potential energy of a bent beam is
/ b 2% z
’2“_{ Effs-;zz)dx; i (2u)
or,
4 00 .. 2
U=L S Er1( = Z.9 ) dy
2 i LSS . e L e e e s (Z_//Q
or, ° ol-/ ’L ; ’ )
U=+ [ ‘e1( Z, 2, * 2, $2* ot oG Velx C2.r6)

Let Zj and Zj be orthogonal functions with respect to the weight function
m, i.e,,

Fhm2 2 dx o, when ¢ s, i tes
and ‘j‘:bmz.résdx =0 , when r £ 5 . i (2.r2a)

Since EI can be expressed in terms of m and the terms containing the pro-
ducts ZpZg when r is not equal to s vanish according to eq. (2.12a), eq.
2.11b) reduces to

( )U ’f"EIJZZZd‘ e e o (2.73)
Since ZJ are furfctlons of x alone and qj are functions of t alone, eq. (2.13)
becames

V=% Z’ f ‘er(Z )dx , e (2.74)
and Su &’l
—_— = . . e ae et (Z_/s
28 ;}fa EIZJ “dx . )
The expression for the kinstic enargy durlry an sarthquake is
_ /4 2Y .2
7 = _Z_fa,,,(a_t_)dx, c e (2.78)
or
- v v v .. (26
-‘—f”’[f +Z h] ( a)

Jtl
Because the terms containing ZpZg vanish when r#s according to eq. (2.43),
eq. (2.16a) becomes

Zd e (2.
. 7 = zféfmdx fy‘JZ_/Z-fmZ a(x+-— bomz X, (2.064)
rd 7 ;o

mZ-d , Ldx, i e (227
’ab J“, Jt*b'{;mz‘} x )
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Thus,

.k - ph z
242(2__7_'.) "‘.75{ mz‘/.z{xafb.[; mZo‘.dx. (25
and °7 }"‘
co SRR &7
PFs y

Hence, Lagrange's equation for the jth mode of a tall tapered chimney
during an earthquake without damping is

.. 4 .o A 2 4 -2
Zd N . - ‘( = .. .. .
o 7&{07/ Xféj; fa%‘ Adx ;/j; EIZJ x=0, ...(z.20)
Cl?}?f/.:——[t.jfé} e (z2/)
Cd
where 4 2
w,z = __—.J__..f E]Z d ...... (2.22)
o‘ fémz dx 4
/72 fmzéd" e oo (2.23)

P f 5 m Zz o x
The nract:.ce in taklng damping into account is to introduce damping as-
sumed effectively to be viscous, for each mode. This is done by introducing
a frsction of critical damping for the particular mode. The temm is zﬁ @. Z_
where ,3. is the fraction of critical damping. Jd o

With the viscous damping term, eq. (2.21) becomes

)7 Z’ff‘w*'j/' ) T/ A 2
RS T2 AT TR A e
6': }///_r . ... .. (2z2g)

Therefore, the genera_. solution of eq. (2.7) may be obtained frem the solu-
tions of eq. (2.25) which is
g = :Z: Z. /’ é. . . (2.27)

The procedures in getting the values of ya f- and ¢ are dlscussed
later. In getting the values of Z the corres‘éond:mg Shear Vj and Bending
Moment M3 factors for a unit Zj at the top of the stack are also derived.
Hence, if the shear Vj and moment Mj factors for each mode are known, then
the total shear V and moment M may be obtained by adding the effect of each

mode, i.e., @

VRN CENGY
n
M = Z%J?j{ .__.....('z_zy)

ITI. DYNAMIC STRUCTURAL PROPERTIES: FUNDAMENTAL MODE

Any elastic curve y(x) which may be induced in the stack can be split up
into a series of Morthogonal" curves (6). To find these elastic curves (Zj)
which are oftentimes called mode shapes, Stodola's method is essentially
used. A modification based uvon Newmark's assumption of regional parabolic
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shape of elastic and inertia load curves is used in the integration proces-
ses to find the derived elastic curve.

This modified Stocdola's method (7} is briefly divided into dif ferent
steps below:

1. Divide the stack into equal segments and then record the mass in-
tensities, concentrated masses, moment of inertias, and length of each seg-
ment as shown in Fig. 3.1. Note that in Fig. 3.1 there is a column at the
extreme right marked "Multiplier". This multiplier is used simply to avoid
large figures;

2. Assume a reasonable deflection curve Z(¢x). This assumed deflection
curve must be based upon previous studies made in the field. Since there is
hardly any data available regarding the natural mode shapes of tapered chim-
neys, it is hoped that this study will be of some use, at least as a guide
for this purpose as well as in analysis and design;

3. Compute the inertia load. Since damping has been found to have neg-
ligible effect on the inertia load (7), the inertia lcad mw! Z is obtained
by multiplying the assumed deflections by the product of the mass and the
square of the unknown frequency. Equivalent concentrated inertia loads are
computed and the results are added to the additional concentrated inertia
loads due to the concentrated masses. Newmark's method of integration (8)
is used to get the equivalent concentrated inertia loads from the inertia
load per unit length;

L, Having found the irertia 'ioads, the deflected curve can then be
constructed by means of the conjugate beam, graphical statics, or Newmark's
method. Actually, the three methods ,are based on the same basic steps of
integration of the inertia load -mw. Z twice and division of the results by
EI and then integrated two times mor“e. The inertia load Wj is integrated
once to arrive at the shear Vj and lntegrated once more to arrive at the
bending moment Mj.. Integration of the M/er-diagram twice gives the de-
flected curve Z The Newmark method (9) affords an orderly arrangement
and a very I‘&plg means of making these integration procedures, which gives
as its final result the deflected curve ZJ. The difference from the conju-
gate beam method is the fact that the inertia load is assumed to be region-
ally parabolic instead of a straight line ard that the figures used in the
computations are tabulated.

Newmark's three reaction formulas used to compute the concentrated in-
ertia loads due to the distributed inertia loads are:

E‘é: ‘,‘;Lz_(’-ia. +3£—a.5c), e e e e e (3.7)
Ry = P (arsebsc), e e L. (32)
R.g= 7%‘[3.5cf56—0.5c}_ (33

where a, b, and ¢ are ordinates of the parabolic curve. The concentrated
inertia loads, which are computed from the distributed inertia loads, are
added to.the concentrated inertia loads caused by the concentrated masses
like floors, corbels, and water tank, Since the shear at the top of the
stack (the free end) is zero, the total concentrated loads are summed from
top to bottom to get the average shears at the mid-points of the various ad-
jacent stations along the stack. After the shear is found, one can easily
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compute the bending moments at any station along the stack by recalling that
the area under the shear diagram is the bending moment. Since the segments
are of 'equal length which is denoted by A the bending moment contributed by
each segment is the average shear multiplied by A which is the area of the
shear diagram for that segment. Therefore, to get the bending moment, the
average shears are summed from top to bottom since again the bending moment
at the top of the stack is alsc zero (free end). The factor A is also taken
out and is incorporated with the previous multiplier. Then divide the bend-
ing moment diagram by EI and compute the concentrated M/flvalues by using
the same procedure that is used in computing the concentrated inertia loads.
These concentrated F= -values are summed from bottom (zero slope) to the top
of the stack. Similarly, the area urder this slope-diagram is the deflec-
tion, the order of summation being from bottom (fixed end) to the top of the
stack.

5. If the derived deflection curve Z (x)coincides with the originally
assumed deflection curve Z(x) then Z (%) is exactly the normal elastic curve.
If, however, the derived Z,(x) does not coincide with the assumed Z(x then
steps (2), (3), and (4) are repeated, only this time the derived Z(x) from
the previous trial is used as the assumed deflection curve. The procedure
is a very rapidly converging process for the fundamental mode (6).

6. The natural frequency is obtained from the fundamental mode shape
arrived at by using steps (1) to (5). For example, in Fig. 3.1, at the top
of the stack the way to obtain the natural frequency is by using the relation-
ship 207 Z ey

lo Ze, = C

e v (3.4)
4 ..
/44Elc;

where
length of segment,
figure arrived at the top of the stack by steps (1) to (5),
acceleration due to gravity,
modulus of elasticity,
e = moment of inertia at the top of the stack.
In this Stodola-Newmark's method, the effect of shear along the height of the
stack and the rocking or rotation of the base are neglected, although they
may be considered (7, .18, 19).

As a numerical example, consider the computations shown in Fig. 3.1.
Line 1 is the station designation. ILine 2 is the di stributed weight per
unit length. Line 3 is the EI value. Line 4 is the assumed deflection curve.
Multiply the figures in line 2 by the corresponding figures in line 5 to
get line 6, and at the same time multiply the multiplier by“’/z/. Line 7 is
obtained from line 6 by Newmark's method of integration discusSed previous-
ly. For example for station e, line 7 becomes 2 .

(3.5 x 7.500 + 3.0 x 7.591 - 0.5 x 6.954) (A« Ze, v /227 .
Line 8 is obtained by multiplication of line 5 by line 3 with the product
multiplied by ‘%2 to balance the factor 72 in line 7. For example, for sta-
tion e, line 8 becomes 2 2

(1.000 x 87.03 xv&+70.7) L(®°Z,, %2 )% ;7
Line 9 is obtained by addition of line 7 and line 8. At station e, line 9
is (45.55 £ 14.77). The other lines follow the same procedures. Before
leaving this discussion, note that the inertia load per unit length has a
discontinuity in station 2. In this station, egs. (3.1) and (3.3) are used.

HEMm O N
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IV. DYNAMIC STRUCTURAL PROPERTIES: SECOND AND HICHER MODES

For the second and higher modes, the procedure outlined in Topic III
is not a convergent process. This is because in processing any assumed mode
shape, any impurity of the lower medes is magnified more than that of the
higher mode. After a large number of repetitions it is found that the higher
modes disappear altogether and that only the fundamental mode remains (6).
However, the process can be modified a little by utilizing the suggestion
made by Newmark that the modification requires purification of the lower
hamonic impurities.

If the normmal elastic curves of a system of lengih h ars Z,x) ,Zz("),'”z' (x)}
then any arbitrary deflection curve of that system can be developed into a

series
Zx)= 2,020+ ¢, 7,(x) +...f53.ZJ-(I) ...... (4.7)
Moreover, the relation .
./;”m(nZ,_(r)Z,(") o, f r#E S, e s et (4.2)
holds, so that any coefficiznt 75 in eq. (4.2) can be found to be
B = f”rotx)Z(x)Z (x)‘l (z.3)
4 f"ﬂ’(x)z (x)o(x -

Equations (4. l), (4.2)7 and (4.3) give a generalization of the theory of
Fourier series. A rigorous proof of eq. (4.2) is found in (6). The proof
is not necessary here because in the computations of the higher mode shapes,
the orthogonality condition of eq. (4.2) has to be satisfied first.

Now, let Z(%x) be the assumed second mode which of course contains
some first hammonic impurity, call it A,Z,(*). Then the purified second

mode shape is Z,(R) = Z(%) —AZ,(X) , e (2.4)
which is free from fl”‘bt hamonic impurity. Substitute eq. (4.L) in eq.
(4.2) and get Limex>z ¢
{ x)YZ ,(x) d?c
_ 2 )Z, e (£.5)

Simx)ZF () dx
Again, Newmark's method of integration, with the regionally parabolic as-
sumption of the curves m(x)Zx)Z(x) and m™Z(xis used in evaluating the num-
erator and denominator of eq. (4.5). The computations for A1 are shown in
Fig. 4.1. After finding the value of Ay, then the assumed deflection curve
is purified. Each value of Z; is multiplied by A} as shown in Fig. 4.2
and then the corresponding Z1A) is subtracted from the assumed Z. The suc-
ceeding steps follow the same procedures discussed in Topiec III."

The procedure is similar for the third mode. However, this time the
assumed deflection curve has to be purified from both the first and second
modes by the same orthogonality relationship of eq. (4.2). For the third
mode, let the assumed deflection curve by Z(x), so that the purified de-

flection Z b
ection 3(x) ecanes 23(1)=ZCX)-AZZ/("’_Bzzz("), cei . (4.6)

where
Z(x) = assumed third mode deflection curve,

23(x) = purified assumed third mode deflection curve,
Zl(x) = from previous computations of first mode,
Z>(x) = from previous computations of second mode,

14-7
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Ap and By are constantis of purification.
: o 3 Y .
Substitution of eq. (4.6) into eq. (4.2) give

5 =J;"’m(x)Z(x)Zz(z)aLx , e e (2.7)
2 f"m(x)Z:(ac)a(x

aj’"’ x)Z (%)) dx
A, = e 21 . i (2.8)

A (%) ZIZ(x) AL x

The computatio‘r’xs of the values of Ay and B 5 by Newmark's method of integra-
tion are shown in Fig. 4.3. The computations of the derived third mode
shape follow the same procedures for the first and second modes, only this
time the assumed third mode shape is corrected for both the first end second
harmonics by -4Z3(x) and by -BpZp{x) respectively, giving the purified as-
sumed curve 23(x) shown in Fig. L.4. The natural frequency computations

are the same for all modes. The procedure for higher modes is the same as
the first three modes, i.e. the assumed higher mode is purified from the
lower modes. The first three modes only are considered in this study.

Now, the constants C can be evaluated. The formula for /; is given
in eg. (2.23). The computations and results by using Newmark's method of
integration are shown in Fig. 4.5.

Note that in the camputations of the mode shapes, the shear Vj and
bending moment factors M; are automatically computed. The values of Zj4, Vj s
and Mj for the 707! Clif%y Creek (10) stack are plotted in Figs. 4.6, 2.7
and L.8. The curves for the 605' modified Selby (11) and the 562' Kyger
Creek (12) stacks are in (7).

b

V. GENERALIZED CO-CRDINATE RESPONSE TO EARTHQUAKE

The general equation for the generalized coordinate 75 with the effect
of ground-motion derived in Topic III is eq. (2.25). This”equation can be
solved either by the Laplace Transform method (13, 7), Newmark's step by
step method (14, 7), or by the use of the analogue computer. Since the
function ¢, does not follow a simple algebraic or trigonometric function,
the analogue computer is used in this study.

The theory, design, and operation of the analogue computer can be
found in the report of Howe, C. E., and Howe, R. E. (15). According to the
above report, the basic computing element is the operational amplifier
which can do three basic operations, namely: addition (summer), sign in-
version (sign inverter), and integration (integrator). Besides the ana-
logue computer, a function generator which is used to simulate the acceler-
ograph is also used. The Reeves Electronic Analogue Computer (REAC Model
No. €101}, Reeves Function Generator (Model No. IC-10l1), and Brush Record
are used in this study.

Since the range of the periods of chimneys is from 0.3 to 3.0 seconds,
it is advisable to express eq. (2.25) in terms of a new variable #’. Let,

t'= cwt. e (5.7)

Then
4 de ALt L8 C . (52
-l ' €2/
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RS P
= ’—-( = id_’ a)é,é — __f_(—_ A 4 z
ar "a )= g 223 ’dc’(")a?ﬁ):::“’z—% . .. (53)
Similarly, L2 22
i - w0t 2
s -
Thereforeleq (2. 25) becomes d:t{é s - (5.8)
GE + 265 = i Lok s

The computer circuit for eq. (5.5) is shown in Fig. 5.1. The response
curves ﬁ for the Clifty Creek Stack (h = 707!), whose first three periods .
are 3,0, 0.88, and 0.38 seconds rer cycle, with danping coefficient

,Jj = 0.050 for each mode, and using the El Centro earthquake of May 18

with N-S camponent, are shown in Fig, 5.2.

VI. DESIGN SHEARS AND BENDING MOMENTS

From the results of Topics IV and V the instantaneous shears and bend-
ing moments can be computed by the use of egs. (2.28) and (2.29). The pro-

cedure is as follows:
1. Multiply the first two dynamic structural properties to get 19 7

and M;/} and express the results in terms of the rs«<imum value which occurs
at the base of the stack for the first mode. Call these quantities shear
coefficients (Y, [[) and bending moment coefficients (M /:, ).

2, Nultlpiy the results of step (1) by the response ¢(t)at. different

instants as given in Topic V.
3. Plot the results of step (2) and obtain the maximum shears and

bending moments at various points along the stack.

The Clifty Creek Stack is used as a numerical example, taking the base
of the stack first. For the shear at the base,

Vy, 17 = (5956 o —/:J)(Z 048) = (2/5.7 A w® —-/z.‘; , (e.7)
V“_ (—452;1@ -,z})( /ggzj_as/clca Oz’ ce e (6.2)
Vis 75 = (33¢.53 2% - ce. .. (c.3
or 637 s2@%2122) (1.877) = 498.72 05 2 , )
\/é,f;zlooéy a)/'-, ) .....(c_/4)
2
\/éz/.’z= .70/ vma-x“)z s e e (C.Zd.)
Vys /5 = 0.407 Yoy @5 . Ci o (6.3a)
Hence, the shear at the base at time t is
Vict) = r.oooy,,, <, ¢(t)+07of max @2 P, (E) o801 Y, SBENE e o (68)
The bending moment at the base is computed in the same manner,
Mblfy = Jeeo My,y /zya . (e.5)
My My = ©.3/6 Mpmpy D, e (6.06)
2 (6.7)

MA.S/T_; = 0.///f Mmaxaja .
Hence, the bending moment at the base of the 707-foot stack at time t is

k) z
M) = 1000 M, 9, 75,(:&) +O3ICM, @, F (O # 011/ Mg Dy P () vn, .- (€.8)
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The shear coefficients (V:/:) and the bending moment coefficients (M:/;)
are tabulated in Tables 6.1 and 6.2. The instantaneous shears and bending
moments at different heights along the illustrative stack (Clifty Creek)
discussed previously are plotted in Figs. 6.1 and 6.2.

VII. CONCLUSIONS AND DzSIGN RECOMMENDATIONS

The shears and bending maments along the height of the chimneys are
computed by the use of the empirical seismic coefficient K, for a particular
locality. The seismic coefficient is multiplied by the weight of the chim-
ney above the section urder comnsideration to get the forces.

The maximum shears and bending moments along the height of the stack
obtained in Topic VI are also plotted. Then these maximum shears and berd-
ing moments are divided by the shears and bending moments derived by the
use of the seismic coefficient. The result of the division is defined as
the magnification factor. The resulbs of the computations are shown in
Figs. 7.1 and 7.2. Figs. 7.3 and 7.4 show that the shear and bending moment
maenification factor curves for damping coefficient of 73% are below the
curves for 5% but the deviation is not significant enough to affect the rec-
ommended design formulas. The magnification factors corresponding to (/+;':!-;,
based on the ACI Ccde (16) Title No., 49-26 are plotted. These magnifica-
tion factors are compared with the ones obtained by means of the dynamic an-
alyses made in this study. The ACI Code is found to be insufficient as
shown in Fig., 7.5, for regions where strong-motion earthquakes occur even
if the value of Ko = 0.20 is used. Therefore, new formulas for the magni-
fication factors need to be derived.

An envelope is drawn for the magnification factor curves, and para-
bolic fitted curves are obtained and recommended for preliminary design.
The fitted curves are shown in Figs. 7.3 and 7.5. Cther fitted curves are
in (7).

After the formulas for the magnification factors have been derived,. it
is necessary to assign values to the seismic coefficients K, for different
localities. The ideal thing to do is to mzke similar studies of available
acc2lerograph records of earthquakes for the particular locality and then
determine K . However, in the absence of accelerograph records, the en-
gineer is referred to the map showing occurrences of earthquakes of various
intensities for di fferent localities in the U. S. put out by the American
Standazfs Association (17). In this study, earthquake regions are divided
into three groups, namely:

1. Strong-motion region (Ke = 0,20), where the accelerograph records
show maximum accelerations of from 0.09g to 0.33g,

2. Medium-intensity region (K¢ = 0.06), where the accelerograph rec-
ords show maximum accelerations of from 0.05g to 0.09%g,

3. Light-intensity region (Ke = 0.03), where the accelerograph rec-
ords show maximum accelerations of less than 0.05g.

The recormmended design formulas for th: shears and bending moments (see
the end of paper for nomenclature) are:

14-10



ISADA on Analysis of Reinforced Concrete Chimneys

7 “ x -,
V:WKeﬁ [/.3 +8[-'—;;-’:i)2]’ % > .,5/,’ Ce ()
= LW KA, X< .54 c . (72)
’ Y x -, z
M= WK h [/fé(-—m—’—'—é-)], xz .24, v (7.3)
= W '}t:: 4 ﬁ’ X< 24 , e . (74)

for stacks whose fundamental periods are from 2.4 to 3.0 seconds per cycle.
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NOMENCLATURE

Units Used

Kip-foot units where 1 kip = 1,000 lbs.

Latin Letter Symbols

Ay,

A>, B> mode shape purifying constants
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a, b, ¢

ordinates of parabolic curve
Young's modulus of elasticity
acceleration due to gravity
height of stack

distance from section under consideration to the section
that is 1/5 of the total height of the chimney above base

distance from section under consideration to center of
gravity of chimney mass above the section

shear magnificaticn factors

bending moment magnification factors

moment of inertia

seismic coefficient

bending moment factor

bending moment coefficient

bending moment

mass per unit length

generalized force corresponding to qj

generalized co—ordinates which are functions of time alone
vertical reactions

total kinetic energy of entire vibrating system
time variable

new time variable

total potential energy of entire vibrating system
shear factor

shear coefficient

shear

load per unit length along the beam or stack
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Jb
23

Greek Letter

ANALYSIS OF STRUCTURAL RESPONSE

weight of chimney above section under consideration, includ-
ing any portion of lining supported from the chimmey shell

weight per unit length along the beam or stack
distance from base to a general point P on neutral axis
absolute horizontal deflection of mass

relative horizontal deflection of the mass with respect to
the ground

horizontal motion of the base of the beam or stack
mode shape or characteristic function

Symbols

ratio of assigned damping to critical damping
denotes increment

dynamic structural constant

slope of the beam

length of a segnent of a stack

natural period in seconds per cycle

natural frequency in radians per second

Subscripts and Superscripts

J
b

H

O NN s, @

refers to the mode of vibration

refers to the base of the stack

refers to the top of the stack
subscript for the rth mode of vibration

subscript for the sth mode of vibration
2

&/ at
2

I/ ot

A
'al e
2 Z/Z:c‘

%.
J/Q
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A A 2
First Mode T 1 | [ 1T 1 1
MULTIPLIER
1) Station e 9 8 7 6 5 4 3 2 | b Fr-kip units
2) Weight (w) Ads  ols s ish 2(%3 2 29 a2l 33 sob 765 Kips pertr.
3" cone 8 72003 7190 77,34 86,69 30 149/00 42748 .87 Added W1.(Kips)
! L 1is! 7 120 925 12/95 20i70 35180 5185 6325 1S/SOEL

) Assumed Z 4000 799 10 la4s5 1309 li99 9 63 __i026 08 0 7,

6)_Inertia In 7500 7591 6354 6720 6)273 4597 3la63 2/652 11055 0312 @}zgtg

7) Conc.in.Load _ 45/s5 90/36 83/s5 80l43 7elos 5571 4iss  3lso 17i3e  4l22 FZet

g v 14/77 25i51  7l46 543  4los  2i93

9) Avg. Shear (V) 60.32 |176.59 [267.90 | 353.76/431.87 | 490.5!
10) Moment (M) 60]3 236/9 504i8 858l6 12904 1781 5 Vwlz, i2g
M+ E1(§) 3also s7l7e o7los s2ls2 99les B86l0a 64ls7 55i60 S0 35i06 XwiZ,+I12Elg
12) Conc. § a76l7_t0i3]a_iisile i12als n7sls 1024l7 7s8ls s70is  sols 24siz XuPz, s144Eig
13) Avg. Stope & 8263 | 7786 |6772 | 5621 | 4496|3321 | 2296 | 1508 | 837 | 245 | 0o

14) Deflection o Z olie5 320882 25k9e 18324 12703 8207 488e  25/90 o2 245 Mo'z, s144E1g
15) Relative Z. 1jooo 799 lslo  laas l309  Jies  lus 063 26 006 Zat

16) Relotive V, 02 | .298 | .45 | .596 | .728 | .826 | .900 | .956 | .989 | 1000 | Vp,

17) Relative M, ois __loss  Jiza _lout 318 1438  Js70 [7o9 54 _tiooM
18) ¥ alse 4alsa 4lsa  4lss  alsa  ais4a  alse  4lse  alsa  alss {radions per sec)?

Deflection Multiplier = (N'W]Zy) = (144Eleg) = (70.4 @) Zq,) + (144-3.5-144-1000-2000-32.2) = 5.35-10 & Z¢,

Avmgc First Mode Frequency w, * 2.13 radians per second

Period

T, * 2.95 seconds per cycle

FIG.3.1. CALCULATIONS OF FIRST MODE DYNAMIC PROPERTIES.

A 2 A
Second Mode 1 I | ] [ | [ ] 3
MULTIPLIER
Statlon . s 8 7 6 5 4 3 2 [ b Fl.=kip units
Waight (w) s sls ule 5) 20z 23 29fi s2 23X s2lo 765 «ipsper t1.
" conc. 8703 19toa 72J03 7uso 77)34 seles 95/30 149)00 s27j48 235587 Added Wt (kips)
zZ, ooo 799 Jeio  Jeas Jsos  Jes  Jus  Jos3 Joze  Joos & z,,
72 Jooo lezs Jjs72  Jjss  .oss loso o . Joos4 Jool zE
mzt 7]500_6losl al2al  2/9950 1]929 Jo24 407  Ji68 |04 2} =g
Conc. mz2 s2]3 72]35 siJes 36lor 23je0 njse sle  2lls  olsr  olos AZ3, +12¢
. 14177 20/69 455 2442 1|25 0/59 ojz_'a ollo - 0/07 Do
3 (cone. mz}) 57.08 |150.12_|206.13 z«.sz'z_ss.or 28124 | 286.63| 288.89|289.77|289.81 | Do
f‘“mz,‘a. = 289.81(Do)
Assumed Z, iooo  la3z alozs -los7 o7 -lse1 -josz 83 -loss -joai Ze2
2,2, iJooo  [346 -lois  -Ji3z -Ji23 -Jore -jo35 -Joiz  -]002 —J00OI3 4 ZeZes
m2,2; 7lsoo_3les7 —lis2 -1lse3s -2Jas7 -il7se -ijois  —|sos _ibs —joo7 Ze 23t 0
Conc.mZ,Z 36./202 40/188 -0./526-22/609-28.719 -211076 12{451 ~6/209 -1/810 -0Ji54 AZyZe *129
- 14]772 ujzzz oj:ss 1&:: s1s_-ijus_-olsee -ojsoa -oli45 -oloso Do
T (Conc. m2Z,2,) 50.974]102.384 101662 | 77.442[47.108 [24.914 [11.897 [5.385 [3.430 [3.226 | Do
.[':lezdx = 3.226(Do)
J,.Pl
Since Zy*Zgz*unity, then A, =—'—m-i%d’(— ':;:Z:' = +o0.0113
f, mZ}dx
FI1G. 4.1. SECOND MODE ORTHOGONALITY CALCULATIONS.
X a A
Second Mode | | 1 | ] [ l I ‘
MULTIPLIER
Station . 9 8 7 6 s . 3 2 | b Fr-kip units
Weight (w) s sls s i) 20P3 23l _29]l #2]) 100 s2j0_ 76]s Kips per ft.
*_ Gone. 8703 1slos 72/03 71ls0 77[34 seles ssl3o wsloo 427l zasE 87 Added W1. (kips)
€l oo 1ss  2lro  sleo  sles i2lss 2070 3slso  sijss esles uslscel,
Assumed Z 1Jooo 433 -loze - -J2e7 -Jse7 -J381 -2z -Jis3  -Jose —joz! Zgs
Az, on  Joos o7 Joos Jooz Jooz  Joor Joor Zy
Puritled 2, 989 Je24 -lo33 -l302 -Jeor -J383 -2 a4 -loss -Joai Z42
Relative Puritied Z, 1Joo0  Je29 -Jo33 -Js0s -leos -[387 -J2s7 Zoz
inertia Ld. Int. 7500 4Jo7e -J376 -4J606 -8l222 -8l940 -8l643 whZest e
Cone. In. Load 38666 47884 - 4290 -54]658 -95]766 -l06[265 -103[201 -93J043-56/583 -i4]583 A w} 2yt 129
- 14]772 13913 -l403 -3l722 ~5.316 -5]694 -4|804 -4[704 -61312 -8/397 0o
Avg. Sheor (V) 53.438(115.235 [110.542] 52.162]-48.92q-160.879]-268.884-366.631 5
Moment (M) 530438 168673 279215 33(377,2821457 120578 -1471306 ~SI3937 943146 (395}
M+ El(§) 34la76_62/471 s3le9s 3slses 2lei  sle73 -alis  -slsiz -13l624-2045 ATujZ,,+ 12€E1g
Gone. § so7231_7i2leel 635]246 433(756 259]808 761426 -4skes -nelass -salo7 -TaOMA AP wiz,.t 144Elg
Avg. Slope L 2127.0241719.798 |1006917| 371.671 |-62.084-321.893 |-398.319|-353.130-236.271|-78.074| Do
Deflaction L= 3775l64 148J61 7118 -078}j0 -1443]77-1387)69 - 106579 -66748 ~314]35_-78l07 A wize,+144Elg
Relative Z, 1000 1437 -lois  -J286  -]384 -[368 -l2s2 -Ji77 -loss -Joz! Zeg
Relative Vs 8 | 255 | 244 | .u5 | —108 [ ~.356 [-.594 |~.810 | ~.949 |-1.000] V,,
Relative Mg o382l 00 237 1202 087 -lo6 -i368 -i676 -1.00Mpz
wy 49]c 4ol a9l  asle asle 4sle asls asle 4sls  asle (radians per second)?
Deflection Multiplier = 5.35.10" W3 Zez, from Fig.3.2.

Auruu. Second Mado anu.m:y 0‘3! 7.05 rodions per second

* 0.88 second per cycle

FiG.4.2. CALCULATIONS OF SECOND MODE DYNAMIC PROPERTIES.
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x 2 A
Third Mede H : i i : : ! i [
| MULTIPLIER
Station . 2 8 7 6 5 4 3 2 i b- FL-kip units
Waight (w) 5 95 1.e 54 203 233 281 421 10K s2jo  76is Kips per 1t
"t Cenc 8703 191,08 72.03 71.9C_ 77.34 86.69 95,30 14900 427.48 2355.87 Added Wt (xips)
Iz LOCC (429 ~-033 -.305 -.405 —.387 -.297 -i86 087 -.Q2! Zgs
% 00T 84  .00i 1083 164 .50 088 035 008 00044 O Za:
TH 7.500_ 1748 Ol 1,404 3329 3465 2.56/ 1474 339 J023 3+
Conc. mZy 3.49 2499  3.26 138 38,16 40,54 3Qi55 ITi86 6,35 057 225, +12g
.- 477 837 0.0t e 245 221 142 0. olss ojis 0o
3 (Conc. mZ3) | ! i ] { i [ 240.47| 0o
o mZ3dz * 240.47 (Do)
Assumed 2y 1,000 -083 -.604 -ls36 -1i78 &2 319 [292 049 Zg3
2,2, 1000 -,023 020 .63 .072 —-/063 -.095 ~|054 -{oot ZezZos
mZ,Zy 7500 -.219  .228 2,461 11462 -1]455 -2.765 -2]273 Eg- 052 TesZest 9
Cone. mZ:Z, 25/48 5,54 452 26,30 IS/63 -15.85 -3i,38 -26,55 1148 -LiIS AZg3Zgs 129
- 477 -J75 24 19 i8S -i93 -1;54 -L3T -ljos -J40 0o
¥ (Cone. m2;25) i i ! 2.93 | Do
Since Zgsy® Zg3® unily, then B, =(2.93)+(240.47) = +0.012184
z, \loco 1799 Jel0 leas 1308 99 i Jos3 Jozs lJoos To
2:23 1000 -j042 -.368 -:233 -i055 032 j038 lola oo  .0003 929
mZ,2; 71500 -1399 —4.185 ~3/609 —i7___.T33_1jios__ |758_ rep ol ZeZg3% §
Conc. m2,Z; 2715 -i69 -45196 -4140 -14j0¢  T{38 12i56 8197 334 (33 2205+ 128
- - 14,77 -1i36 -4%—! 92 -i72 47 # 45 ] £ 12 Do
Z(Cone.m2,2,) i =355 0o
Since Zgi = Zgy® uhity, then Az:(-38.15)+(289.81) = —0.12129 L
FIG. 4.3. THIRD MODE ORTHOGONALITY CALCULATIONS.
2 X P
Third Mode T I ] | 1 | | |
MULTIPLIER
Station e 9 8 7 6 5 4 3 2 I b Ft-kip units
Weight (w) s ols s 1sll_ 203 23t 291 s2)i 1910 s2Jo  76ls xips per tr.
*_ Gonc. 87i03 19Uo8 72,03 7190 77.34 8669 95/30 I4slo0 42748 235[5.87 Added Wt. (kips)
Et 1Joo 155 270 520 9/25 12les 20.70 35/80 51185 69/25 115l90E1,
Assumed 25 1000 -.053 -604 -i536 -8 62 319 292 71 Jos4s Zgs
4.2, -li21 _ -097 -.074 -i054 -/037 -lo24 -/04 —Joo8 —loo3 -jooi Z,,
822z 02 005 ©  -j004 -/605 -loos -loo4 —Jooz -lool o Zgz
Purified Z3 109 039 -/530 -l478 -136 lis 337 [302 175 Joso 23
Relative Purified Z; 4000 (035 -478 —i43I -|l23 [I72 304 J272 (158 1045 24
inertia Load Int. iS00 _.333 -5.449 -6.308 -2/497 31973 sjs46 a5 198 2.340 Wiz g
Cone. Inertia Load 29974 5,381 -60.665 -73/026 -27/505 46,079 I03/884 1341416 _98l942 30.052 AwlZe; 129
* " “ WalrTz 1135 <5844 -5260 165 2/531 4917 6]883 11464 (7994 Do
Avg. Shear (V) 4474651562 |-15247 [-93.533-122.653-74043| 34.758 [176.057 [286463/334.509] Do
Moment (M) 44,746 96,008 80J761 -12/772,35/425209/468 -174]710 1347 287j810 622319 A w;Z,5+ 12g°
M= EL(§) 28868 35559 15/531  -1381 -101458 -i0lI9 41880  [026 4156 5369 Aw3Zey+12Eleq
Concentrate § 324.239 399989 189,488 -8[737 -II6l0BO -II6I528 -58/983  -1464 461955 31247 Aw] ze5+144E1eq
Avg. Slope = 691126 |366.887/-33.102 |-222.594-213.853-97773 xa.r—s:F 77738 |78.202 [31.247 | Do
Deflection L. 696637 S.5II -361376-3 -05l684 108469 2051942 187,87 109/449 31247 Aw] 245 +144E 1gg
Relative Z3 ooo loo8 -lsis  -lam sz liss 296  Jaes 157 loas Zay
Relative Vg 434 | 153 [-.046 |-.280 [-.367 [~.221 | 104 | .526 | .856 | 1.00O | Vp,
Relotive Mg lor2__lis4 430 -loz1 18 -|337 -l281  looz Jec2 1loom
% 9 29 9 269 9 ES 9 268 269 (radians per second)2
Averoge Third Mode Frequency wg= 16.4 radians per second
" “ Period T/, 2 0.38 second per cycle
F1G.4.4. CALCULATIONS OF THIRD MODE DYNAMIC PROPERTIES.
L2 2 2
T T T T T T ]
i MULTIPLIER
Station . s 8 7 6 s 4 3 2 1 b Ft.—kip units
Weight (w) 5 5 14 sl 2003 23t 29]i  s2i 1319 s2]0  76]5 Kips per f1.
" Cone. 87,03 191108 72/03 71190 77.34 86/69 9530 14500 427/48 2355.87 Added Wt. (xips)
2z, LOOO 035 -478 -l431 -y23 72 (304 272 lise  Joas [
23 OO0 ool 228 486 jois 1030 Jos2 Jor4  Jo25  Jooz 75
mz} 7500 JOI0  2.599 2/809 % 1693 2i677 3us | 104 Zist s
Conc.mZy 2498 1020 28,81 30]99  6.[s5  9lo1 30/58 3s|se 1a)i3  2las 222,129
.- u.('n 03 2[r9 2027 20 44 1la9  1Ll87 80 Do
2 (Conc.mzy) | 22429 0o
mZ_dx = 224.29(0a)
1] 1
From FIG.4.4, j:mz,ax =334.51(Do), trom FIG.4.5, _f.mz:u 2224.29( Do),
from FIG.4.2, J:'i-z‘ dx=-452.51(Do), trom FIG.4.3, _;.:nlidx 2240.47(00},
trom £16.3.2, J::-z, dx=593.57 (Do), from F1G.4.1, f:.uzfax *289.81(Do),

and  Z,rZ,,Z,, unity, therefors
» b 2
nos [ mz,ax s [mz)dn 593,57+ 289.81% +2.048
1 iy
fpr fmZ,dx ¢ [ mZ3xr~452.51+240.47  ~1.882
»
e [mzyens f:mzidx'354.5|+ 224.29 <+ 1.491

F16.4.5. CALCULATIONS OF THE l'; QUANTITIES.
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T T T

FI16. 8.1 IVSTAN TANEOVS SHEAR Curves,
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ISADA on Analysis of Reinforced Concrete Chimneys
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