SHEARS IN A TALL BUILDING SUBJECTED TO STRONG MOTION EARTHQUAKES T. P. Tung and N. M. Newmark #### 1. Introduction Results are given of a digital computer analysis for the dynamic shears in a 10-story structure subjected to the horizontal ground motions for each of twelve different strong-motion earthquakes recorded by the U.S. Coast and Geodetic Survey on the West Coast. The building is considered as a shear beam. Two different configurations of the 10-story building are considered: - (a) a building having a shear stiffness in the lowest story of 2,000 kips per in., with stiffness varying uniformly to 200 kips per in. for the top floor. The weight of the building varies uniformly from a value of 760 kips at the lowest floor to 400 kips at the top floor; - (b) a similar building having a uniform stiffness of 2,000 kips per in. for all floors, and a uniform weight of 582 kips at each floor level. The method of analysis used was the same as that described in a previous paper by the authors (1). The analysis was carried out on the electronic digital computer at the University of Illinois, the ILLIAC, with each of the accelerograms reproduced by a series of polygonal lines. The twelve accelerograms used in the analyses are identified in Table 1. The time interval in the numerical integration process was 0.0075 sec. Each problem used 20 to 30 minutes of machine time with about one third of the time used in punching results on the output tape. Only maximum shears were printed. The calculations were carried out for three different damping conditions corresponding to: (a) no damping; (b) 2 per cent of critical damping; and (c) 10 per cent of critical damping. The damping coefficient, n, was computed on the basis of the fundamental frequency and average weight of the building. All of the frequencies and mode shapes for the building with variable stiffness are given in Table 2 of Ref. (1). The fundamental period of this structure is 1.32 sec. University of Illinois, Urbana, Illinois. #### 2. Results of Analysis Only a part of the results of the analyses can be presented here because of shortage of space. The characteristics of the accelerograms are not given here. However, from integration of the accelerograms, the maximum velocities of the ground are determined and are reported in Table 1. In general, these maximum velocities occurred from one to ten seconds after the onset of the earthquake. The maximum dynamic shears in all stories of the building with variable stiffness, for four selected accelerograms, is given in Table 2. In general, the maximum shears at different points in the building, for a given earthquake, occurred at different times, ranging from a little over 1 sec. to as much as 30 sec. after the onset of the earthquake. A similar tabulation for the building of uniform stiffness and mass is given in Table 3 for the same accelerograms. These accelerograms correspond to the least severe, the most severe, and two intermediate cases. In order to complete the presentation of the most useful data, the maximum base shears, and the maximum shears in the top story, are given, respectively, in Tables 4 and 5 for both buildings and for all of the accelerograms. #### 3. Interpretations of Data The relative shear distribution over the height of the buildings, as taken from Tables 2 and 3, are shown for selected accelerograms in Figs. 1(a) and (b). In general, the shear distribution is nearly parabolic, with the exception that for the lower stories a somewhat linear departure from the parabolic curve is noted. However, there are large differences in the distribution among the various accelerograms and between the two buildings, but other things being equal, only small differences for different degrees of damping. Statistical analyses of shear distributions in a uniform building based on a random excitation of the base of the building, when the building is considered to be a shear beam, indicate a parabolic distribution of shear (2). The departures from the parabolic curve are due not only to the fact that one of the buildings considered herein is not uniform, but also because the excitation is not entirely random. A plot of the base shear in each of the buildings for different degrees of damping is shown in Figs. 2(a), 2(b), and 2(c) as a function of the maximum ground velocity. In general, there is a fairly good correlation. The severity of the different earthquakes appears to be roughly in proportion to the maximum velocity reached in the ground motion of each of the quakes. However, the intensity of the maximum base shear decreases sharply as the damping coefficient increases from zero to 10 per cent. An interpretation of the dynamic shears can be given in terms of either shear coefficients or seismic coefficients. The shear coefficient, C, is defined as that part of the total tributary weight above a certain level which, applied statically in a horizontal direction, would account for the maximum dynamic shear at that level. The local seismic coefficient, c, is defined as that proportion of the weight at any level which, applied statically in a horizontal direction, would account for the shears at any elevation below that level. The two coefficients are equal for the top story. The base shear coefficient, in terms of the total mass of the building, for both buildings and for all degrees of damping, is given in Table 6. It can be seen that the magnitude of the base shear is considerably larger than the quantity usually considered as applicable in the design of tall buildings and exceeds by a large factor the base shear coefficients used in the Joint Committee recommendations or the Uniform Building Code specifications. The discrepancy, however, should not be interpreted as a lack of conservatism in present design procedures. The present analysis neglects certain factors in the resistance of the building. The actual conditions may not be as severe as those indicated by the analytical results. Average values, for all the accelerograms, of shear coefficients for all stories and local seismic coefficients are given in Table 7 for both buildings and all degrees of damping. Considerable variation from these values is indicated by the results for individual accelerograms. In many cases, one would compute a negative local seismic coefficient at some of the intermediate floor levels from the results for a particular accelerogram. #### 4. Concluding Remarks These remarks should be regarded as preliminary. Further calculations will be made to explore more systematically the general problem of earthquake response of structures. A systematic study of the effect of various distributions of mass and stiffness over the height of the building can be made with the techniques that have been explored in this paper. Some better means of characterizing an earthquake accelerogram in terms of its effect on the building must be sought. There is a discrepancy between the results of the present analysis and that reported in Ref. (1). In the previous work, maxima were tabulated at too coarse a time interval, and some of the peak values were apparently lost. In the present calculations, the shear at each iteration interval was computed and compared with the previous maximum to insure the recording of the absolute maximum value. #### 5. Acknowledgment The program for the digital computer calculation was prepared by Dr. Tung. However, since his departure from the University of Illinois, the calculation of a number of cases has been carried out by Mr. T. C. Hu, Research Assistant in Civil Engineering, who assisted also in the interpretation of the results. Grateful acknowledgment is made to Dr. G. W. Housner of the California Institute of Technology, for the loan of the original records of the accelerograms. #### 6. Bibliography - (1) "Numerical Analysis of Earthquake Response of a Tall Building," by T. P. Tung and N. M. Newmark, Bulletin of the Seismological Society of America, Vol. 45, No. 4, October 1955, pp. 269-278. - (2) "A Statistical Estimate of Relative Distribution of Extreme Shear in a Tall Building Subjected to Random Earthquake Shocks," by T. P. Tung and N. M. Newmark, Structural Research Laboratory Report No. 116, Civil Engineering Department, University of Illinois, March 1956. - (3) Report of a Joint Committee on Lateral Forces, "Lateral Forces of Earthquakes and Wind," Transactions ASCE, Vol. 117, 1952, pp. 717-754. TABLE 1 LIST OF ACCELEROGRAMS USED | No. | Location | Date | Direction | Max. Velocity in./sec. | |-----|--------------------|---------------|----------------|------------------------| | 2 | L. A. Subway Term. | Oct. 2, 1933 | N-39°E | 2.94 | | 3 | L. A. Subway Term. | Oct. 2, 1933 | N-51°W | 3.81 | | 4 | L. A. Subway Term. | Mar. 10, 1933 | n-3 9°e | 5.43 | | 5 | L. A. Subway Term. | Mar. 10, 1933 | N-51 °W | 3.74 | | 6 | El Centro, Calif. | May 18, 1940 | E-W | 17.85 | | 7 | El Centro, Calif. | May 18, 1940 | N-S | 17.44 | | 9 | El Centro, Calif. | Dec. 30, 1934 | N-S | 10.58 | | 10 | El Centro, Calif. | Dec. 30, 1934 | E-W | 13.41 | | 15 | Vernon | Mar. 10, 1933 | E-W | 9.49 | | 16 | Vernon | Mar. 10, 1933 | n-s | 9.83 | | 17 | Vernon | Oct. 2, 1933 | s-82°e | 3.83 | | 19 | Vernon | Oct. 2, 1933 | n-08° e | 2.14 | TABLE 2 MAXIMUM DYNAMIC SHEARS-VARIABLE STIFFNESS BUILDING | Story | Damping
Factor | Max. | Shear, | kips, | for Accel | erogram No. | |---|-------------------|------|--|--|--|--| | Top
9
8
7
6
5
4
3
2 | | | 1094
1608
1962
2020
1798
2000
2397
2907
3262
3563 | 431
645
793
809
853
863
1081
1331
1532
1649 | 114
175
228
298
360
417
437
510
544
562 | 159
165
193
293
276
285
320
271
332
430 | | Top
9
8
7
6
5
4
3
2 | 0.02 | | 488
737
755
950
943
1024
1199
1340
1586
1739 | 226
345
416
438
442
504
531
625
717 | 51
79
114
149
170
178
195
206
223
239 | 118
113
126
185
183
181
207
181
231
289 | | Top
9
8
7
6
5
4
3
2 | 0.10 | | 256
330
316
354
457
488
559
624
673
720 | 164
249
283
282
349
417
439
461
481
506 | 30
46
61
70
84
104
124
144
160 | 76
87
72
117
108
108
114
113
113 | TABLE 3 MAXIMUM DYNAMIC SHEARS-UNIFORM STIFFNESS BUILDING | Story | Damping | Max. Shear, | | for Accel | erogram No. | |-----------------------------|---------|--|--|---|---| | | Factor | 6 | 16 | 5 | 19 | | Top 98 76 54 321 | 0 | 764
1274
1696
2059
2241
2551 | 385
678
889
1060
1155 | 113
217
301
357
400
419 | 272
403
423
390
396
322 | | 4
3
2
1 | | 2968
3425
3640
3801 | 1456
1537
1573
1688 | 424
436
456
4 7 5 | 250
29 0
4 07
529 | | Top
98 76 54 321 | 0.02 | 526
862
1156
1420
1643
1731
1734
1973
2120
2294 | 271
473
583
743
849
926
1010
1074
1105
1179 | 72
136
178
206
230
251
279
303
316
326 | 160
263
281
288
301
259
176
220
249 | | Top
98
76
54
32 | 0.10 | 262
414
508
622
670
669
702
7 59
850
928 | 156
300
444
558
632
682
726
754
767
814 | 43
82
111
134
154
165
170
174
181 | 90
151
173
190
210
176
131
126
149 | TABLE 4 MAXIMUM BASE SHEARS | Accel. | Max. Ground | | | Base She | ar, kip | 8 | | |--------|-------------|----------------------|--------------|--------------|-------------|-------------|---------| | | Velocity | Vari | able Sti | ffness | Uni | form Sti | ffness | | No. | in./sec. | n = 0 | n = 2% | n = 10% | n = 0 | n = 2% | n = 10% | | | | | | | | | | | 2 | 2.94 | 418 | 232 | 216 | 3 85 | 220 | 190 | | 3 | 3.81 | 705 | 301 | 241 | 601 | 413 | 296 | | 14 | 5-43 | 1305 | 1011 | 231 | 847 | 448 | 327 | | 5 | 3.74 | 562 | 239 | 173 | 475 | 3 26 | 184 | | 6 | 17.85 | 3 56 3 | 173 9 | 720 | 3801 | 2294 | 928 | | 7 | 17.44 | 259 3 | 1856 | 1202 | 3717 | 2404 | 1441 | | 9 | 10.58 | 2132 | 1393 | 7 65 | 2240 | 1266 | 1041 | | 10 | 13.41 | 1708 | 893 | 5 3 5 | 1424 | 856 | 551 | | 15 | 9.49 | 1516 | 1040 | 820 | 1767 | 1541 | 1197 | | 16 | 9.83 | 1649 | 797 | 506 | 1688 | 1179 | 814 | | 17 | 3.83 | 6 3 8 | 492 | 404 | 975 | 666 | 509 | | 19 | 2.14 | 430 | 289 | 157 | 529 | 296 | 199 | TABLE 5 MAXIMUM TOP STORY SHEARS | Accelerogram | | • | Top Story | Shear, k | ips | | |--------------|--------------|-------------|------------|-------------|-------------|-------------| | No. | Vari | able Sti | ffness | Uni | lform Stii | ffness | | | n = 0 | n = 2% | n = 10% | n = 0 | n = 2% | n = 10% | | 2 | 116 | 109 | 82 | 141 | 7 2 | 1474 | | 3 | 2 0 6 | 105 | 64 | 189 | 99 | 60 | | ŢĻ | 3 66 | 197 | 41 | 161 | 7 8 | 42 | | 5 | 114 | 51 | 3 0 | 113 | 72 | 43 | | 5
6 | 1094 | 488 | 256 | 764 | 526 | 262 | | 7 | 825 | 565 | 377 | 901 | 561 | 3 85 | | 9 | 741 | 429 | 295 | 609 | 3 61 | 297 | | 10 | 513 | 29 7 | 122 | 602 | 3 67 | 123 | | 15 | 367 | 321 | 193 | 430 | 313 | 218 | | 16 | 431 | 227 | 164 | 3 85 | 271 | 156 | | 17 | 197 | 149 | 90 | 286 | 181 | 156 | | 19 | 159 | 118 | 7 6 | 272 | 160 | 90 | TABLE 6 BASE SHEAR COEFFICIENTS | Accelerogram | | Base She | ear in Term | ns of Tot | tal Weight | t | |--------------|-------|-----------|-------------|-----------|------------|---------| | No. | Vari | lable Sti | ffness | Uni | lform Sti | fness | | | n = 0 | n = 2% | n = 10% | n = 0 | n = 2% | n = 10% | | 2 | 0.072 | 0.040 | 0.037 | 0.066 | 0.038 | 0.033 | | 3 | 0.122 | 0.052 | 0.042 | 0.103 | 0.071 | 0.051 | | 4 | 0.225 | 0.174 | 0.040 | 0.146 | 0.077 | 0.056 | | 5
6 | 0.097 | 0.041 | 0.030 | 0.082 | 0.056 | 0.032 | | 6 | 0.614 | 0.300 | 0.124 | 0.653 | 0.394 | 0.160 | | 7 | 0.447 | 0.320 | 0.207 | 0.639 | 0.413 | 0.248 | | 9 | 0.368 | 0.240 | 0.132 | 0.385 | 0.218 | 0.179 | | 10 | 0.295 | 0.154 | 0.092 | 0.245 | 0.147 | 0.095 | | 15 | 0.261 | 0.179 | 0.141 | 0.304 | 0.265 | 0.206 | | 16 | 0.284 | 0.137 | 0.087 | 0.290 | 0.203 | 0.140 | | 17 | 0.110 | 0.085 | 0.070 | 0.168 | 0.114 | 0.087 | | 19 | 0.074 | 0.050 | 0.027 | 0.091 | 0.051 | 0.034 | TABLE 7 AVERAGE SHEAR AND LOCAL SEISMIC COEFFICIENTS | Stiffness Story Shear Coeff., C, in Terms of Local Seismic Coeff., c, Distribution Tributary Weight in Terms of Local Weight n = 0 n = 2% n = 10% n = 0 n = 2% n = 10% Varying Top 1.068 0.637 0.373 1.068 0.637 0.373 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.269 0.695 0.438 0.269 Uniform Top 0.695 0.438 0.269 0.695 0.438 0.269 | |--| | Varying Top 1.068 0.637 0.373 1.068 0.637 0.373 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | Varying Top 1.068 0.637 0.373 1.068 0.637 0.373 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 9 0.688 0.412 0.260 0.344 0.208 0.157 8 0.529 0.315 0.193 0.251 0.146 0.081 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 7 0.442 0.263 0.153 0.222 0.132 0.053 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 6 0.345 0.222 0.135 0.126 0.091 0.077 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 5 0.292 0.185 0.117 0.086 0.034 0.048 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 4 0.275 0.161 0.104 0.197 0.060 0.046 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 3 0.257 0.151 0.094 0.164 0.099 0.040 2 0.255 0.149 0.090 0.232 0.135 0.068 1 0.248 0.148 0.086 0.201 0.132 0.058 | | 2 0.255 0.149 0.090 0.232 0.135 0.068
1 0.248 0.148 0.086 0.201 0.132 0.058 | | 1 0.248 0.148 0.086 0.201 0.132 0.058 | | | | Interm Ton 0.605 0.138 0.260 0.605 0.138 0.260 | | 011110111 10p 0.037 0.470 0.203 0.037 0.470 0.203 | | 9 0.584 0.370 0.232 0.472 0.301 0.195 | | 9 0.584 0.370 0.232 0.472 0.301 0.195
8 0.498 0.316 0.203 0.328 0.210 0.146 | | 7 0.422 0.275 0.179 0.193 0.150 0.106 | | 6 0.357 0.249 0.164 0.099 0.143 0.101 | | 5 0.327 0.219 0.146 0.177 0.070 0.056
4 0.302 0.195 0.129 0.153 0.052 0.032 | | 4 0.302 0.195 0.129 0.153 0.052 0.032 | | 3 0.277 0.179 0.120 0.100 0.070 0.057 | | 2 0.269 0.174 0.114 0.209 0.132 0.066 | | 1 0.264 0.171 0.110 0.217 0.139 0.071 | Relative Shear Distribution over Height of Building, Accelerogram 5 Relative Shear Distribution over Height of Building, Accelerogram 19 Base Shear versus Ground Velocity, n = 0 2(b) Base Shear versus Ground Velocity, n = 2%2(c) Base Shear versus Ground Velocity, n = 10%