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ABSTRACT : 

This paper provides an overview of the challenges related to the design and construction of reinforced concrete
(RC) frame buildings in areas of high seismic risk, and discusses alternative improved construction
technologies and related educational initiatives. RC frame construction is frequently used in regions of high
seismic risk across the world. Recent earthquakes have revealed major seismic deficiencies in these buildings,
some of which led to catastrophic collapses and significant death tolls. Causes for the unsatisfactory
performance include the absence of special seismic detailing of key structural elements, inadequate material
and construction quality, and/or inadequate design. The problem is aggravated further by the use of
unreinforced masonry infill walls that significantly affect the way in which the building responds to earthquake
ground shaking. The authors propose two alternative building technologies characterized by a higher level of
seismic safety at a comparable cost and construction complexity. One alternative is to provide RC shear walls
continuously along the building height at several strategic locations; this will result in an increased stiffness and
lateral drift control. Another alternative is to use confined masonry construction, in which lateral load resistance
relies on masonry walls “confined” by horizontal and vertical RC elements. Confined masonry construction
requires a lower level of design expertise and construction skills. Recent international initiatives focused on
educating both technical and non-technical audiences on the challenges associated with seismic performance of
RC frame construction and alternative building technologies are also discussed in the paper. 

KEYWORDS: Reinforced concrete, nonductile, frame with infill, confined masonry, earthquake risk
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1. INTRODUCTION  
 
The use of reinforced concrete (RC) construction in the modern world stems from the wide availability of its
ingredients - reinforcing steel as well as concrete. The most common type of RC construction for housing is in
the form of cast in-situ frames with concrete floor and roof systems. These three-dimensional RC frames are
made functional for habitation by building walls called infill walls. These walls are built after the concrete
frame construction has been completed; reinforcement and anchorage to the adjacent frame elements (beams
and columns) is usually not provided. The infills can be constructed by using a variety of masonry units: clay
bricks or hollow clay tiles, hollow or solid concrete blocks, etc. 
 
With increasing urbanization, RC frame construction has been widely used for multi-family housing in both the
developing and industrialized countries. RC frame construction comprises approximately 75% of the building
stock in Turkey, about 80% in Mexico, and over 30% in Greece (Yakut, 2004). Design applications range from
single-family dwellings in countries like Algeria and Colombia, to high-rise apartment buildings in Chile,
Canada, Mexico, Turkey, India, and China. Detailed reports on RC frame construction practices in these
countries are available in the World Housing Encyclopedia (WHE) (EERI/IAEE 2000). 
 
RC frame construction is frequently used in regions of high seismic risk, such as Latin America, southern
Europe, North Africa, Middle East and Southeast Asia. Recent earthquakes across the world, including the
1999 Izmit and Ducze earthquakes in Turkey, the 2001 Bhuj earthquake in India, the 2001 Chi Chi earthquake
in Taiwan, the 2003 Boumerdes earthquake in Algeria, and the recent 2008 Sichuan, China earthquake revealed
major seismic deficiencies in these buildings, some of which led to catastrophic collapses causing death tolls
measured in thousands. 
 
Causes for the unsatisfactory performance lie in the absence of special seismic detailing of key structural
elements, inadequate material quality, absence of construction supervision, and/or inadequate design by
architects and engineers without formal training in seismic design. The problem is aggravated further by the use
of unreinforced masonry infill walls. In usual design practice, the effect of infills is not accounted for. But,
these walls significantly affect the way in which the building responds to earthquake ground shaking and may
cause significant torsional effects.   
 
 
2. CHALLENGES 
 
Special care is required to understand the challenges that earthquakes pose and to ensure that appropriate
features are incorporated in the architectural and structural design and construction of RC frame buildings. This
paper discusses the challenges and proposes alternative technologies that provide higher level of seismic safety
at a comparable cost and construction safety. The material presented herein draws from the tutorial titled At
Risk: The Seismic Performance of Reinforced Concrete Frame Buildings with Masonry Infill Walls published
by the EERI (Murty et al. 2006).  
 
The primary challenges in RC frame construction in seismic areas are to ensure: 
(a) that the beams are weaker than columns, 
(b) that the rebars in the beam-column joints allow proper concrete placement in the joint region, 
(c) that the beams are ductile, through the proper rebar detailing, and 
(d) that the frame is not too weak or too flexible in the horizontal direction, either in any one story or in the
whole. 
 
It is not easy to achieve ductile behavior in RC frame buildings - special seismic detailing requires an advanced
level of construction skills and quality control. Inadequately reinforced beam-column joints pose a serious
threat to basic frame behavior and can lead to devastating consequences, including the total building collapse.
In general, achieving satisfactory seismic performance of RC frame buildings subjected to several cycles of
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earthquake ground shaking can be a challenge even in highly industrialized countries with advanced
construction technology. 
 
 
3. ALTERNATIVE BUILDING TECHNOLOGIES 
 
When special attention cannot be paid to design, detailing and construction, RC frames alone should not be
used to resist lateral loads. There are at least two alternative lateral load resisting systems which are expected to
ensure a higher level of seismic safety than the non-ductile RC frame building system with masonry infills;
these are confined masonry and RC frames with shear walls. The former system is intended for low-rise
construction, while the latter can be used for a wide range of building heights, however it is most economically
feasible for medium- to high-rise construction. 
 
 
3.1. Confined Masonry Construction  
 
Over the last 100 years, confined masonry construction has emerged as a building technology that offers an
alternative to both unreinforced masonry and RC frame construction. In fact, confined masonry has features of
both these technologies. Confined masonry construction consists of masonry walls (made either of clay bricks
or concrete block units) and horizontal and vertical RC confining members built on all four sides of a masonry
wall panel. Vertical members, called tie-columns, resemble columns in RC frame construction except that they
tend to be of far smaller cross-sections. Horizontal elements, called tie-beams, resemble beams in RC frame
construction. In worldwide applications, confined masonry is used for non-engineered low-rise construction
(one- to two-storey buildings) and also for engineered construction such as medium-rise apartment buildings
(up to six storeys high). For a detailed discussion on the basic concepts and global applications of confined
masonry constructions refer to Brzev (2007). 
 
The appearance of a finished confined masonry construction and a RC frame construction with masonry infills
may look alike to lay people, however these two construction systems are substantially different. The main
differences stem from the construction sequence and the manner in which these structures resist gravity and
lateral loads. These differences are summarized in Table 1 and are illustrated by diagrams in Figure 1. 
 
Table 1 A comparison between confined masonry and RC frame construction (Brzev, 2007) 

 
Confined masonry construction 
 

 
RC frame construction 

 
Gravity and 
lateral 
load-resisting 
system 

Masonry walls are the main load 
bearing elements and are expected to 
resist both gravity and lateral loads. 
Confining elements (tie-beams and 
tie-columns) are significantly smaller 
in size than RC beams and columns. 

RC frames resist both gravity and lateral 
loads through their relatively large beams, 
columns, and their connections. Masonry 
infills are not load-bearing walls. 

Foundation 
construction 

Strip footing beneath the wall and the 
RC plinth band 

Isolated footing beneath each column 

 
 
Superstructure 
construction 
sequence 

Masonry walls are constructed first.  
Subsequently, tie-columns are cast in 
place. Finally, tie-beams are 
constructed on top of the walls, 
simultaneously with the construction 
of floor or roof slabs.  

The frame is constructed first. Masonry 
walls are constructed at a later stage and 
are not bonded to the frame members; 
these are nonstructural, that is, non-load 
bearing walls. 

 
In confined masonry construction, confining elements are not designed to act as a moment-resisting frame; as a
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result, detailing of the reinforcement is simple. In general, confining elements have smaller cross-sectional
dimensions than the corresponding beams and columns in a RC frame building. It should be noted that the most
important differences between confined masonry walls and infill walls is that infill walls are not load-bearing
walls, while the walls in a confined masonry building are load-bearing walls. A transition from RC frame to
confined masonry construction in most cases leads to savings related to concrete cost, since confining elements
are smaller in size than the corresponding RC frame members. Also, less reinforcement and less intricate
detailing is required for confined masonry construction than for RC frame construction. Therefore, in this case
“less means more”. For practical design guidelines related to confined masonry construction refer to Blondet
(2005). 
 

  
 
Figure 1. RC frame construction (left) and confined masonry construction (right) (Brzev, 2007). 
 
Confined masonry buildings have demonstrated satisfactory performance in past earthquakes. In general,
buildings of this type do experience some damage in earthquakes, however when properly designed and
constructed they are able to sustain earthquake effects without collapse. Confined masonry construction has
been exposed to several major earthquakes in Latin America: the 1985 Llolleo earthquake in Chile (magnitude
7.8) (Moroni et al. 2004); the 1985 Guerrero-Michoacan (magnitude 8.0) (Schultz, 1994) and the 2003
Tecoman (magnitude 7.6) earthquakes in Mexico (EERI, 2006); the 2001 El Salvador earthquakes (magnitude
7.6 and 6.6) (Dowling, 2004); the 1970 Chimbote (magnitude 7.0) and the 2007 Pisco (magnitude 8.0)
earthquakes in Peru (EERI, 2007). The reconnaissance reports have confirmed that confined masonry buildings
had performed very well in these earthquakes. It should be noted that this statement applies to buildings regular
in plan and elevation, which are lightly loaded and have rather large wall density. In such cases, confined
masonry tends to be quite forgiving of minor design and construction flaws, as well as material deficiencies.
Poor seismic performance has been noted only when gross construction errors, design flaws, or material
deficiencies have been introduced in the building design and construction process. Poor performance is usually
associated with tie-column omissions, discontinuous tie-beams, inadequate diaphragm connections, and
inappropriate structural configuration. Confined masonry has demonstrated similar seismic performance in a
few other countries, including China, Indonesia, and Iran. For further information on the mechanisms of
seismic load resistance and the seismic performance of confined masonry construction refer to Brzev (2007). 
 
 
3.2. RC frames with shear walls  
 
This dual system consists of RC shear walls provided at certain locations between the columns in a RC frame
structure, as shown in Figure 2. In this system, shear walls are the main lateral load-resisting elements, while
the columns are mainly resisting the effects of gravity loads. The walls should ideally be provided continuously
along the building height to avoid a significant variation in the stiffness. The walls should be placed
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symmetrically in plan to minimize the torsional effects in the building. Although the detailing requirements
associated with RC shear wall construction are less complex compared to the detailing of RC frame members
(and especially the area of beam-column joints), horizontal and vertical wall reinforcement must be installed
and anchored by skilled construction labour. This construction is practiced in major urban centers of many
countries worldwide. Examples from Chile and Canada are documented in the WHE reports by Moroni and
Gomez (2002) and Pao and Brzev (2002). The mechanics of shear wall behaviour under seismic loads and the
corresponding design approaches have been covered in several seismic engineering design references, e.g.
Paulay and Priestley (1992).  
 

 
 

 

Figure 2. RC frame buildings: three-dimensional RC frame only (left), and three-dimensional RC frame with
RC shear walls (source: Murty 2005). 
 
The provision of RC shear walls results in an increase in the lateral stiffness and a decrease in the lateral
deflections/drift under seismic load, thus leading to reduced damage to structural and nonstructural building
components. Properly designed and detailed buildings with RC shear walls have shown very good performance
in past earthquakes. The 1985 Llolleo, Chile earthquake (magnitude 7.8) exposed many RC buildings with
shear walls to extremely severe ground shaking. Most of the shear wall buildings suffered minor damage or
remained undamaged (Moroni and Gomez, 2002a). In the 1999 Izmit and the 2003 Bingol (Turkey)
earthquakes, thousands of people died, many of them crushed under the ruins of collapsed RC frame buildings
with infills. However, tunnel form buildings containing RC shear walls performed very well and no damage
was reported (Yakut and Gulkan, 2003). The same was true for the “Fagure” type buildings in Romania after
the 1977 Vrancea earthquake (magnitude 7.2) (Bostenaru and Sandu, 2002). RC shear wall buildings were
exposed to the 1979 Montenegro earthquake (magnitude 7.2) and the 1993 Boumerdes, Algeria earthquake
(magnitude 6.8). The buildings were damaged due to severe ground shaking, however their collapse was
avoided. 
 
 
4. EDUCATIONAL INITIATIVES 
 
Several organizations and individuals have made efforts to develop and share resources related to mitigating
seismic hazard associated with vulnerable RC construction and promoting alternative construction technologies
such as confined masonry. A few notable examples of global educational initiatives related to this topic are
briefly outlined below. 
 
At the 12th World Conference on Earthquake Engineering held in 2000 at Auckland, New Zealand, the
Earthquake Engineering Research Institute (EERI) and the International Association for Earthquake
Engineering (IAEE) inaugurated a web-based network called World Housing Encyclopedia (WHE). The WHE
provides a platform for sharing information about housing construction practices worldwide, including both
vulnerable housing that performed poorly in earthquakes and good practices that performed well in earthquakes
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(EERI/IAEE 2000). The WHE web site (www.world-housing.net) contains a searchable database of global
housing information prepared by over 180 collaborators from 40 countries. In addition, the Tutorials section of
the web site contains useful resources for seismic design, retrofit and construction intended to improve building
construction practices in regions of high seismic risk. An example is the tutorial on reinforced concrete frames
with masonry infills discussed in this paper, which was developed by a group of WHE network participants
(Murty et al., 2006). The tutorial is a contribution towards understanding seismic risk and challenges associated
with the RC frame construction and it is intended for use by both technical and non-technical audiences. An
electronic version can be downloaded free of charge from the WHE web site (Tutorials section), and a printed
version can be ordered from EERI. For a detailed overview of the WHE initiative refer to the paper at this
conference by Greene et al. (2008). 
 
The National Information Center of Earthquake Engineering (NICEE) at Indian Institute of Technology
Kanpur, India, is a non-profit organization that maintains and disseminates resources on earthquake
engineering. Over the years, NICEE has undertaken numerous community outreach activities including
seminars, workshops, conferences, and published several publications that are either available free or charge or
at a nominal fee (www.nicee.org). NICEE has co-sponsored the development of a set of 24 earthquake ‘‘tips’’,
each two pages long, which explain basic concepts of earthquake-resistant construction, ranging from a basic
introduction to earthquakes to aspects of seismic design and detailing of reinforced concrete and masonry
buildings (Murty, 2005). More recently, NICEE has published a monograph on confined masonry intended to
sensitize and educate building professionals in India and other countries where this building technology is not
being practiced (Brzev, 2007). The first part of the document outlines the main features of confined masonry
construction, worldwide design applications, and the performance in past earthquakes, while the second part
contains a generic guideline for the construction of low-rise confined masonry buildings. 
 
Latin American earthquake engineers from countries like Peru, Colombia, and Mexico, have developed several
excellent manuals and guidelines related to confined masonry construction. Blondet (2005) has developed a
practical hands-on guide for builders of confined masonry buildings. The manual has been developed according
to the Peruvian codes and practices, but could be adapted for the application in other countries. AIS (2001) has
developed a graphical manual for the construction of confined masonry buildings which is mainly intended for
use by skilled workers and technicians. The manual was developed according to the Colombian masonry
standard, but general concepts could be used for the application in other countries. A few relevant confined
masonry publications, both for technical and non-technical audiences, were developed in Mexico
(Martinez-Pacheco, 2008). In Europe, City University of London (2005) published a web-based guideline for
seismic design of various forms of masonry construction, including confined masonry, according to Eurocode
8. 
 
Post-earthquake rebuilding efforts often provide opportunities for introducing new and/or improved building
technologies. These efforts usually take place immediately after an earthquake has taken place, when the local
population is extremely concerned about earthquake safety and is more receptive to changes in building
technologies. Two recent examples related to the application of confined masonry construction are briefly
described below. After the 2004 Great Sumatra earthquake and the Indian Ocean tsunami (magnitude around
9.0), a U.S.-based NGO Build Change undertook rebuilding of dwellings in Banda Aceh, one of the most
severely disaster-stricken areas of Indonesia. Confined masonry was the building technology of choice for both
the homeowners and Build Change, since it was practiced before the disaster and performed relatively well in
past earthquakes in Indonesia. After assessing local construction practices, Build Change introduced
improvements in the construction quality and detailing of reinforcement. A number of hands-on training
programs for masons and other artisans took place and several training materials were developed (Hausler,
2006). Another example of a successful technology transfer in a post-earthquake rehabilitation effort is the
work done in Mansehra, Pakistan after the 2005 Kashmir earthquake which killed 80,000 people in Pakistan
and India. With the assistance from the Swiss Agency for Development and Cooperation, Schacher (2007)
prepared several training materials for the local artisans in the affected area and provided technical assistance in
the rebuilding effort. Before the earthquake, unreinforced masonry and RC frame construction were prevalent



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
construction practices in the area. Thus, in this case confined masonry was introduced as a new building
technology, or a somewhat modified version of reinforced masonry construction which was introduced in the
area affected by the 2001 Bhuj earthquake in the neighboring India (Schacher, 2008). 
 
In January 2008, an International Strategic Workshop on the Promotion of Confined Masonry was organized at
Kanpur, India, by the NICEE, EERI and the World Seismic Safety Initiative (WSSI). A group of international
experts from India, the USA, Switzerland, Peru, Mexico, China, Indonesia, and Canada created a Confined
Masonry Network (CM_net) with two major objectives: to improve the design and construction quality of
confined masonry where it is currently in use; and to introduce it in areas where it can reduce seismic risk. The
web site www.confinedmasonry.org has been created as a growing repository of resources related to confined
masonry construction, including training materials, guidelines, and research papers. Besides compiling the
existing resources on confined masonry, this group is planning to develop a number of new resources, including
an international norm for seismic design of confined masonry structures, state-of-the-art papers on confined
masonry and research needs, structural and architectural design guidelines, etc. The network is also planning to
organize awareness seminars for the design community, to write non-technical articles, and has already
developed brochures that have been posted on the web site. The CM_net provides a platform for discussion on
issues related to confined masonry design and construction in seismic areas. Interested individuals are welcome
to participate in the network activities by signing up on the web site www.confinedmasonry.org. 
 
 
5. CONCLUSIONS 
 
The earthquake engineering community has the responsibility to reduce the earthquake risk associated with
non-engineered or inadequately engineered construction in countries of high seismic risk and repeated high
death tolls in earthquakes (Comartin et al., 2004). This paper has outlined some efforts made to date toward
mitigating seismic risk associated with vulnerable nonductile RC frame construction with masonry infills
through educational initiatives in several countries. We, the earthquake engineering community, need to move
faster in this direction in order to prevent the recurrence of unacceptably high human losses in future
earthquakes. 
 
 
ACKNOWLEDGMENTS 
  
The authors of this paper would like to acknowledge the contributions made by Craig Comartin, Heidi Faison,
and Ayhan Irfanoglu, who have co-authored the tutorial on RC frame construction discussed in this paper. The
support of the Earthquake Engineering Research Institute in the development and publishing of the tutorial is
greatly appreciated. The development of the tutorial was supported by the Bangladesh University of
Engineering and Technology-Virginia Tech Partnership for Reduction of Seismic Vulnerability, with funding
from the U.S. Agency for International Development. Any opinions, findings, conclusions, or recommendations
expressed herein are the authors’ and do not necessarily reflect the views of their organizations. 
 
 
REFERENCES 
 
AIS (Colombian Association for Earthquake Engineering) (2001). Manual de Construcción, 
Evaluación y Rehabilitación Sismo Resistente de Viviendas de Mampostería (Manual for the 
Construction, Evaluation and Seismic Strengthening of Masonry Houses), La Ref de Estudios en prevencion de
desastres en América Latina (in Spanish) (www.asosismica.org). 
Blondet, M. (2005). Construction and Maintenance of Masonry Houses – For Masons and Craftsmen, Pontificia
Universidad Catolica del Peru, Lima, Peru (free download available at www.world-housing.net).  
Brzev, S. (2007). Earthquake-Resistant Confined Masonry Construction, National Information Center of
Earthquake Engineering, IIT Kanpur, India, 81 pp. 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
City University of London (2005). Low-Rise Residential Construction Detailing to Resist Earthquakes, City
University of London and Pell Frichmann (www.staff.city.ac.uk/earthquakes/Repairstrengthening/index.php). 
Comartin,C. et al. (2004). A Challenge to Earthquake Engineering Professionals, Earthquake Spectra, Vol.20,
No.4, pp.1049-1056. 
Dowling, D.M. (2004). Adobe Housing Reconstruction after the 2001 El Salvador Earthquakes, Lessons
Learned Over Time - Learning From Earthquakes Series, Volume 5, Earthquake Engineering Research Institute
(EERI), Oakland, California, 69 pp. 
EERI (2007). The Pisco, Peru Earthquake of August 15, 2007, EERI Special Earthquake Report, Newsletter,
Earthquake Engineering Research Institute, Oakland, California, October 2007. 
EERI (2006). The Tecomán, México Earthquake January 21, 2003, An EERI and SMIS Learning from
Earthquakes Reconnaissance Report, Technical Editors S.M. Alcocer and R.E. Klingner, Earthquake
Engineering Research Institute, Oakland, California, March 2006.  
EERI/IAEE (2000). World Housing Encyclopedia, Earthquake Engineering Research Institute and the
International Association for Earthquake Engineering (www.world-housing.net). 
Greene, M., Comartin, D.C., Murty, C.V.R, and Brzev S. (2008). The World Housing Encyclopedia: Strategies
for Global Information Sharing and Problem Solving, Proceedings of the 14th World Conference on
Earthquake Engineering, Beijing, China. 
Hausler, E. (2006). Earthquake-Resistant Design and Construction Guideline for Single-Storey Reinforced
Concrete Confined Masonry Houses Built in the Aceh Permanent Housing Reconstruction Program, Build
Change, 157 pp. (www.confinedmasonry.org). 
Martinez-Pacheco, M. (2008). Personal Communication. 
Moroni, M.O., Astroza, M., and Acevedo, C. (2004). Performance and Seismic Vulnerability of Masonry
Housing Types Used in Chile, Journal of Performance of Constructed Facilities, ASCE, Vol.18, No.3,
pp.173-179. 
Moroni, O. and Gomez, C. (2002). Concrete frame and shear wall building, WHE Report 6 (Chile), World
Housing Encyclopedia, Earthquake Engineering Research Institute and International Association for
Earthquake Engineering (www.world-housing.net). 
Moroni, O. and Gomez, C. (2002a). Concrete shear wall building, WHE Report 4 (Chile), World Housing
Encyclopedia, Earthquake Engineering Research Institute and International Association for Earthquake
Engineering (www.world-housing.net). 
Murty, C.V.R, Brzev, S., Faison, H., Comartin, C.D., and Irfanoglu, A. (2006). At Risk: The Seismic
Performance of Reinforced Concrete Frame Buildings with Masonry Infill Walls, Earthquake Engineering
Research Institute, Publication No. WHE-2006-03, First Edition, 70 pp. (free download available at
www.world-housing.net). 
Murty, C.V.R. (2005). Earthquake Tips – Learning Earthquake Design and Construction, Indian Institute of
Technology Kanpur and Building Materials and Technology Promotion Council, India (free download available
at www.nicee.org). 
Pao, J., and Brzev, S. (2002). Concrete shear wall highrise buildings, WHE Report 79 (Canada), World
Housing Encyclopedia, Earthquake Engineering Research Institute and International Association for
Earthquake Engineering (www.world-housing.net). 
Paulay,T., and Priestley,M.J.N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, John
Wiley & Sons, USA. 
Schacher, T. (2008). Personal Communication. 
Schacher, T. (2007). Confined Masonry – an Illustrated Guide for Masons, Training material prepared for the
Swiss Agency for Development and Cooperation, 16 pp. (www.confinedmasonry.org). 
Schultz, A. E. (1994). Performance of Masonry Structures During Extreme Lateral Loading Events, Masonry in
the Americas, ACI Publication SP-147, American Concrete Institute, Detroit, pp.21-55. 
Yakut, A. (2004). Reinforced Concrete Frame Construction, World Housing Encyclopedia – Summary
Publication 2004, Earthquake Engineering Research Institute, Oakland, California, pp.9-1 to 9-8. 
Yakut, A., and Gulkan, P. (2003). Tunnel Form Building, WHE Report 101 (Turkey), World Housing
Encyclopedia, Earthquake Engineering Research Institute and International Association for Earthquake
Engineering (www.world-housing.net). 


