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ABSTRACT : 

Economic considerations dictate that building structures be able to resist extreme events, such as a major
earthquake or a fire, without collapse but with some structural damage. This makes it imperative for design to be
based on nonlinear analysis that incorporates strength degradation.  This study examines the complexities 
associated with modelling degradation of strength in structures for seismic and high temperature environments. It 
is shown that both dynamic and high temperature analyses are akin to displacement controlled static analysis. If 
appropriate numerical procedures are used, strength degradation does not result in dynamic instability often
associated with this phenomenon. Inclusion of strength degradation as a material property can lead to results that 
are sensitive to model discretisation for both dynamic and high temperature loadings.   
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1. INTRODUCTION  
The FEMA 440 (2005) document on nonlinear seismic analysis has given significant importance to strength
degradation and recognises that the current procedures for addressing this are ambiguous and unclear. Similarly 
the codes on structural fire design (e.g. Eurocode 2, 1996) incorporate reduction of strength at elevated 
temperatures for both concrete and steel. Strength degradation at the component or structural level in static
load-deformation problems has been shown (e.g. Van Mier, 1984) to be due to a combination of elastic unloading 
and strain localisation (small regions that demonstrate high strains, e.g. due to cracking). Numerical simulation of 
localisation using finite element analyses has been previously shown to be mesh sensitive for static problems
when strength degradation is taken as a material property (e.g. Pankaj, 1990; Bicanic and Pankaj, 1990). This
study considers the issues associated with strength degradation in general and of mesh sensitivity in particular for 
structural components subjected to earthquake and high temperature loadings.  
 
2. STRENGTH DEGRADATION IN SEISMIC ANALYSIS  
Consider a single degree of freedom (SDOF) system idealised using an axial element with a concentrated mass
(Fig. 1a). The axial element has Young’s modulus E, cross-sectional area A, and length L. Assume that the 
material of the bar has an elasto-plastic stress-strain material behaviour as shown in Fig. 1b. A normalised ground 
acceleration history is shown in Fig. 1c. This acceleration history is scaled to a peak ground acceleration of 0.3g
for subsequent analyses. The acceleration history is a simulated record compatible with the elastic acceleration 
spectrum of Eurocode 8, though this is not important for the purpose of this paper. It is apparent that if
monotonically increasing static loads are applied at the mass point no solution will be obtained once the load 
exceeds 0yAσ . The displacement response of the SDOF system subjected to the scaled earthquake of Fig. 1c is 
shown in Fig. 2. In addition to the response obtained from the material property assumed in Fig. 1b, Fig. 2 also
shows the response for elastic, hardening ( EET 1.0= ) and perfectly plastic ( 0=TE ) cases. This problem brings 
into focus a number of issues associated with dynamic response with elements undergoing in-cycle strength 
degradation. Firstly, this simple example demonstrates that in-cycle strength degradation can be incorporated in a 
computational model and it does not necessarily lead to dynamic instability, which has been a concern (FEMA 
440, 2005). Seismic analysis is akin to a displacement controlled static analysis and does not cause unbounded 
response. Clearly a large value of R or a very steep softening slope may result in solutions not converging. The 
former implies that the seismic demand is too high in comparison to seismic capacity while the latter indicates 
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lack of ductility. The limit of the slope of the strain softening branch has been previously discussed in the 
literature (Pankaj, 1990). Secondly, plastic deformations are accumulated in a number of discrete steps and for 
the remainder of the time the frequency response of the system is identical to an elastic system. Fourier analysis of 
the response shown in Fig. 2a showed that plasticity (including strength degradation) introduces zero frequency 
content to the response. Thus strength degradation (or other forms of hardening rules) on their own and without
stiffness degradation do not change the frequency characteristics of a nonlinear system. Some nonlinear static
procedures of seismic analysis assume that equivalent linear parameters of a system undergoing inelastic
behaviour comprise increased damping and lengthened period. The latter assumption needs to be considered
carefully in the absence of stiffness degradation.   

Let us now consider the issue of mesh sensitivity. It has been demonstrated that as a system such as the one shown
in Fig. 1a is subjected to increasing displacements or loads, it will undergo strain localisation (e.g. van Mier, 
1984). This means that a small region will experience cracking or crushing resulting in reduced load carrying 
capacity while other regions will experience elastic unloading. Thus strength degradation is a kind of an average 
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Figure 2: (a) Displacement response; (b) Plastic displacement response 

(a) 

(b) (c) 

Figure 1: (a) SDOF system with 5.0=T s, 05.0=ξ ; (b) Stress-strain behaviour of the axial element 
with EET 1.0−= ; ARmSay /(max)0 =σ ; 5.1=R  (c) Normalised ground acceleration history 
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of localising and unloading regions. Due to the localised nature of post-peak deformation there is no unique 
stress-strain relationship for the material itself. Instead it has been suggested (Pankaj, 1990; van Mier, 1984) that a 
unique relationship between stress and average crack width be adopted. In the context of computational modelling 
this implies that slope of the line representing strength degradation will be dependent on the element sizes used in
modelling. Let us again consider the system of Fig. 1a. At the instant the displacement of the mass exceeds 

ELy /0σ the axial element will exhibit strength degradation. In a computational analysis this degradation will be
distributed over the entire element rather than being localised. With a priori knowledge about local behaviour it is 
possible to include a discontinuity within an element using the partition of unity procedure. However, let us
consider a simple smeared crack approach in which we aim to obtain increased strain localisation with mesh 
refinement. From this point of view consider modelling the single axial element of Fig. 1a using two elements, 
each of length 2/L . Since loading in this particular problem will induce uniform internal loads let us increase,
fractionally, the yield strength of one of the elements to force strain localisation in the weaker element and 
possible elastic unloading in the other. Once again stress-strain behaviour including the slope of the softening 
branch is assumed to be a material property.  Two analyses are conducted. In the first the softening slope for both
elements is assumed to be identical to the case of a single element. In the second the strain softening modulus H 
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is reduced to half the value used for the single element case. The results are shown in Fig. 3.    
 

 
Figure 3a shows that if strain softening modulus is treated as a local material property the displacement response
is sensitive to mesh discretisation i.e. 1 and 2 element systems result in a different response. However, when the 
softening modulus is treated as a nonlocal (or structural) parameter dependent on the element size mesh
insensitive solutions are obtained. Figure 3b demonstrates that plastic strain increases as the localisation region is
made smaller. In this example the plastic strain for the 2 element discretisation (with modified H) is exactly 
double that obtained for the 1 element discretisation. Clearly the plastic strain with unmodified H is not 
compatible to the 1 element case. 
 
 

(b) (a)

Figure 3: (a) Displacement; and (b) plastic strain response of 1 and 2 element systems with 
strength degradation 
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3. STRENGTH DEGRADATION IN HIGH TEMPERATURE ANALYSIS  
Let us now consider the effect of strength degradation in the analysis of structures subjected to fire. Eurocode 2 
(1996) prescribes stress-strain relationships for steel and concrete at elevated temperatures and for both materials
the descending branch of the stress-strain curve is treated as a material property. Typically the Young’s modulus,
the peak strength and the slope of the descending branch (strain softening) all reduce as temperature increases. In
this study we examine the issues associated with strain softening using a few simple examples. To maintain 
transparency in the solutions obtained, for all cases linear elasticity followed by a linear strain softening branch is
assumed to represent material behaviour i.e. changes in peak strength and elastic modulus are not incorporated. 
The examples focus on the effect of mechanical forces emanating from thermal expansion.  
 
3.1 Uniform temperature increase 
Consider a simply supported beam with pinned ends as shown in Fig. 4. Typical properties, chosen arbitrarily for 
numerical simulation, are also shown in the figure. If the beam is subjected to uniform temperature increase the
thermal expansion is cancelled out by equal and opposite contraction caused the forces at the restrained ends.  

 
It is easy to see that in the elastic regime the compressive stress in the beam will be uniform and given by 
 

 TE Δ= ασ  (2) 
 
where α  is the coefficient of thermal expansion and TΔ  is the temperature increase. If we go on increasing the 
temperature and assume the beam is stocky (i.e. we ignore possibility of buckling), the compressive stress will at a
certain temperature reach the yield stress yσ . With continued increase in temperature, strain softening will cause 

the stress to decrease. It is apparent that the decrease in stress results from some kind of crushing which will be
localised i.e. failure will not be distributed over the entire span. With increasing temperature the crushed zone will 
get crushed further and to maintain force compatibility the remainder of the beam will undergo elastic unloading.
In order to numerically simulate this consider the beam idealised using 25 and 50 element discretisations. 
Localisation is forced by making one element fractionally weaker than the rest. With increase in temperature 
localisation does occur in the weaker element with elastic unloading in the others. As a result the reaction force at
each of the pinned ends decreases with an increase in temperature as shown in Fig. 5. If softening modulus is 

Figure 4: An axially restrained beam with rectangular cross-section of span 6000=L mm; depth 
100=d mm; width 50=w mm; Young’s modulus 51005.2 ×=E N/mm2; yield stress 

300=yσ  N/mm2; and coefficient of thermal expansion 61012 −×=α / oC. 

Figure 5: Reaction due to uniform temperature increase with different mesh discretisations and softening 
modulus 
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treated as a material property (in this case we assumed 635−=H  N/mm2) then the post-peak response is 
different for the two idealisations. If, however, the softening modulus for the 50 element discretisation is reduced 
to half its previous value identical post peak response is obtained as shown in Fig. 5. This illustrates that treating
the softening modulus as a material property leads to mesh sensitive results. Another obvious feature of high 
temperature analysis is that this problem is akin to a displacement controlled static analysis i.e. there is no problem
in convergence necessitating any form of indirect displacement control. 
 
3.2 Uniform thermal gradient without average temperature increase 
Now consider the beam of Fig. 4 subjected to a uniform thermal gradient across the depth with temperature 
decreasing from bottom to top and no average temperature increase. This will cause thermal bowing and 
discussion on deflections and axial forces emanation has been discussed by Usmani et al. (2001). If one of the 
beam supports was a roller, then due to the curvature of the beam, the horizontal distance between the ends of the
beam will reduce. In computational simulation this feature can only be included through a geometrically nonlinear
analysis. In fact if geometrical nonlinearity is ignored then the results for results for a beam with restrained pin
supports and one with one roller support will be identical and no stresses will be induced in the beam in any of the 
two cases.    

Comparisons of results for an elastic beam of Fig. 4 with and without inclusion of geometric nonlinearity are
shown in Fig. 6 where the temperature refers to its value at the bottom face. In Fig. 6a shows the central deflection 
of the beam when geometric nonlinearity is included (NLGEOM) and when it is not (no NLGEOM). It can be
seen that inclusion of nonlinear geometry causes axial forces which limit the central deflection whereas when this 
is excluded the deflection goes on increasing linearly. Figure 6b shows the increase in horizontal reaction which
remains zero when nonlinear geometry is excluded.  
 

 
Now consider that both nonlinear geometry and strain softening are included in the analysis and once again a
uniform thermal gradient without an average increase in temperature is applied. It is apparent that in addition to 
axial forces bending moments will be induced in the beam and the largest moment will be at the centre of the span. 
As a result with increasing temperature the central region will undergo inelastic deformation accompanied by
strain softening. The question arises whether with continued increase in temperature the remainder of the beam 
(away from the central region) would elastically unload with strain localisation in the centre. Interestingly this
does not occur in this case and the strain softened region spreads outwards. To explain this phenomenon consider 
the beam to have two different material – a small central region with an elasto-strain softening material and
remainder of the beam comprising a purely elastic material. With increasing temperature gradient the central 
region becomes inelastic and with continued increase of temperature the thermal bowing proceeds in the form of 
two elastic beams with a hinge in the middle as shown in Fig. 7a. It is apparent from this configuration that the 
stresses in the some of the elastic regions will be higher than the central region to maintain equilibrium. The 
consequence of the above discussion is that for a uniform beam (with no variation in properties) softening will

(a) 
(b) 

Figure 6: (a) Deflection and (b) reaction in an elastic beam with and without nonlinear geometry 
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start in the centre and extend outwards with deflected shapes as shown in Fig. 7b. 

This indicates that for the “thermal gradient only” problem strain softening does not result in strain localisation.
So numerically results would not be mesh sensitive if the softening modulus were taken to be a material property.
This is indeed found to be the case. Figure 8 shows central deflections and horizontal reactions with different
mesh discretisations. It can be seen that the results are almost identical.  

 
In the event of a fire structural elements will experience both an average temperature increase and a thermal
gradient (the hottest being the surface exposed to fire). The above simple examples show that while the former
causes strain localisation accompanied by elastic unloading the latter does not. Therefore for fire analysis 
inclusion strength degradation in numerical simulation needs considerable further research. More complex
situations that need to be included are reduction of the peak strength, elastic modulus and softening slopes with
temperature.  

 
4. CONCLUSIONS  
Both dynamic and high temperature analyses are similar to displacement controlled static analysis and, if
appropriate numerical procedures are used, strength degradation does not result in dynamic instability often
associated with this phenomenon. Analysis of the frequency response of structural components subjected to 
dynamic loads shows that strength degradation introduces a zero frequency component to the response but does
not cause a change in the frequency content. Strength degradation when treated as a material property leads to 
mesh sensitive results for dynamic loading. The simple example considered in this study also indicates that this is
also the case for constant temperature increase problems. Thermal gradient alone without average temperature
increase does not lead to localisation. Therefore inclusion strength degradation elevated temperatures needs
considerably more research before it can be used with confidence.  

(a) (b) 
Figure 8: (a) Mid-span deflection and (b) horizontal reaction in an elasto-strain softening beam with mesh 
discretisations  

Figure 7: (a) Deflected shape of the beam with softening limited to the central region; (b) Progressive deflection 
with increasing thermal loading  

(a) 
(b) 
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