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ABSTRACT : 

The properties like the rigidity of a frame are very important to predict the dynamic response of the building 
with any dampers since the effect of dampers in a frame strongly depends on the rigidity of the frame. 
However, in the case of steel frames to which concrete slabs are attached, the mechanism for the transmission 
of forces between steel frames and concrete slabs has not been clarified sufficiently and the appropriate 
numerical model has not established while steel frames without concrete slabs can be accurately simulated 
recently. The objective in this paper is the establishment of the suitable numerical model to accurately predict 
the behavior of the damped steel building in the full-size shaking-table test in future. Finally, we examine the 
validity of the present model in comparison with some experimental results. 
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1. INTRODUCTION  
 
The dynamic characteristics in earthquakes of steel buildings with any dampers, depend on the rigidity of steel 
frames since the effect of dampers in steel frames strongly depends on the rigidity of the steel frames. Therefore, 
we should grasp the rigidity of a steel frame accurately in the structural design of a damped steel building. In the 
case of a simple steel structure without concrete slabs and non-structural components, the rigidity of such a 
structure may accurately be predicted by using the finite element method. On the other hand, a steel building 
naturally includes concrete slabs and the full-size damped steel building specimen which will be tested in March 
2009, also have slabs. In this case, it is difficult to predict the rigidity of such frames accurately because the 
influence of concrete slabs on the rigidity of steel frames has not been clear. For examples, the number of stud 
bolts which are used as connection members is usually decided only in order to satisfy the balance of forces 
between a steel frame and a concrete slab in AIJ Recommendation( AIJ 1985). It is unknown whether the stud 
bolt group decided so, can keep the section of composite beam being plane (plane-section condition). If it is 
false, the rigidity can not be found easily using the classical beam theory. Furthermore, it is not obvious what  
kind of numerical model is suitable to simulate a steel beam with a concrete slab. The main reason is that the 
mechanism for the transmission of forces between a steel frame and a concrete slab has not been clarified 
sufficiently, and any numerical modeling for such structures have not been verified. Numerical modeling should 
involve the essence of a target structure and make it possible to simulate the mechanism faithfully. As a 
consequence, the load-displacement relation and so on, inevitably agrees with experimental results. 
Our objective in this paper is the establishment of an appropriate numerical modeling for steel frames with 
concrete slabs in order to predict the behavior of the full-sized damped steel building specimen in future. Based 
on various achievements obtained in the past researches, the useful models for materials and connection 
conditions are selected and applied to components. In this paper, we use shell elements for steel members of 
wide flange beams and concrete slabs since we also need to estimate values of local stresses and the locally 
yielding behavior at the above project. The concept of the present modeling, however, is applicable for 
numerical analyses using beam elements. Finally we show some numerical examples to verify our modeling. 
Our numerical results are compared with the past experimental ones. The numerical results are computed with 
the nonlinear finite element analysis program which has been developed at Motoyui laboratory.  

 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
2. MODELING FOR MATERIAL 
 
Our main object in this paper is to suggest an appropriate modeling to simulate steel frames with concrete slabs 
numerically. The appropriate modeling should involve the performance of higher accuracy, better convergence 
and reduction of CPU time. Therefore, we should extract significant factors from the mechanical characteristics 
of composite structures and apply simpler models to the extracted factors. In this section, we describe the 
modeling for material properties after yielding of steel frames and concrete slabs. 
 
2.1. Steel 
The Baushinger effect of steel has great influence on the post-yielding behavior during cyclic loading. It is also 
important to consider the residual stress by welding etc. since the residual stress decreases the substantial yield 
stress. For the consideration of these effect, the Overlay model is applied to the material property model for 
shell elements by which steel frames are divided. According to the Mises yield criterion, J2 flow rule and 
combined hardening rule, stress tensors and tangent coefficient tensor are calculated independently at each 
virtual layer in the Overlay model. The virtual layer number is set to 14 in this paper. The distribution of the 
yield stresses on virtua l layers are set as shown in Figure 1. The distribution is decided to agree with the past 
experimental result obtained with the uni-axial cyclic loading test for the standard mild steel in Japan. Figure 2 
is the comparison of a numerical result with experimental one. The numerical result is almost close to the 
experimental one 
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Figure 1 Distribution of Yield Stress on virtual layers       Figure 2 σ-ε  curve ( Uni-axial stress condition) 

 
2.2. Concrete  
The material models for brittle  materials like concrete have been suggested by many researchers. We now select 
the Barcelona model as the yield function. This function can be expressed as 
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where I1 and J2 are the first invariant of a stress tensor and the second invariant of a deviatoric  stress tensor, τmax 
is the maximum principal stress for the plane stress field in shell elements, α and β are non-dimensional 
parameters which should be decided through the material test results, H( ) is the Heaviside function. This yield 
function was suggested by Lubliner, Oliver, Oller, Onate 1989 and also used by Lee, Fenves 2001. Their models 
can evaluate the degradation phenomenon of elastic stiffness after crack of concrete introducing damage 
parameters. However, for simplicity and convergence at numerical iterative calculations, we do not consider the 
degradation phenomenon of concrete and any hardening or softening behavior. Generally speaking, our 
treatment in which the degradation is ignored is not appropriate. However, if the effect of concrete slabs on steel 
frames can not be neglected but can be assumed to be only secondary, the treatment is the reasonable 
approximation. The elastic region defined with Eqn.2.1 in the principal stresses space is shown in Figure 3. Here, 
α is set to 0.12 and 0.08.  

 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
The non-associative flow rule is assumed for the plastic flow rule as followings 
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where pe&  is a plastic strain rate tensor, σ~ andσ̂  are a deviatoric stress tensor and a mean stress, γ is a consistent 
plastic parameter and Φ is a potential function which is defined as Eqn.(2.2b). By applying the non-associative flow 
rule, the tangent coefficient tensor after yielding becomes to be non-symmetric. As a result, the global tangent 
stiffness matrix falls into an un-symmetric matrix.  
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We do not artificially symmetrize the stiffness matrix but directly solve simultaneous equations with un-symmetric 
coefficient in order to prevent the iterative calculation from being the bad convergence condition. 
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Figure 3 Yield function in principal stresses space    Figure 4 σ−ε  curve ( Uni-Axial stress condition) 

 
3. MODELING OF INTERACTION BETWEEN STEEL FRAME AND CONCRETE SLAB 
 
3.1 Hysteresis curve for Stud Bolt 
Concrete slabs are connected to steel frames using stud bolts. The necessary number of stud bolts (nr) between 
the point where the plastic hinge occur and the inflection point, are calculated through the horizontal shear force 
estimated as (AIJ 1985) 
 

              
s

h
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where Qh and qs are the design horizontal shear force and the shear strength of a stud bolt, As σy are a cross 
section area of a steel beam, Fc and Ec are a compressive strength and Young’s modulus of concrete and as is a 
section area of a stud bolt, Ac is defined with the product of a effective width which is calculated by 0.1x(Length 
of a span) and thickness of a concrete slab. It is noted that only the balance of force at the ultimate state is 
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considered by using Eqn(3.1). The stud bolt number found by Eqn(3.1) does not always satisfy the plane-section 
assumption. Generally the rigidity only with the stud bolt number is much less than the necessary rigidity for 
stud bolts to hold the plane-section condition. The matter means that the value of the bending rigidity for a steel 
beam with a concrete slab is less than calculated one based on the elastic beam theory with plane-section 
condition. Therefore, the modeling for the connection by stud bolts should be set carefully.  
We set such a shear force and gap between concrete and steel member relation for the monotonic loading as 
agrees with the result of the experiment by Inoue, et.al. 1988. Furthermore, the hysteresis model for stud bolts in 
shear was suggested by Yamanobe et.al. 1997. According to the model, the hysteresis for stud bolts in cyclic 
loading is the slip type. Then we apply the solid line in Figure 6 to the shear force and gap relation. It is noted 
that the results of the experiment as shown in Figure 5 include the interaction between stud bolts and concrete, 
and our hysteresis model for the connection with stud bolts reflects the effect of the damage of concrete near 
stud bolts.  
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Figure 5 Standard test for stud bolts          Figure 6  Shear force – gap between    

               concrete and steel member relation 
3.2 Setup of parts 
In this paper, steel frames and concrete slabs are divided with 4-node shell elements(Dvorkin and Bathe 1984), 
and for each stud bolt a 2-node co-rotational beam element(Crisfield 2000) is used. Shell elements mapped on 
the mid surface of a concrete slab are connected to shell elements on the mid-surface of flange plate at steel 
beams using beam elements of stud bolts as shown in Figure 7(a). Figure 7(a) is the diagram for the concrete 
slab with steel decks. In such concrete slabs, we assume that the shadow area shown in the figure is only active , 
and slabs are plates with uniform thickness(t’) though the slab thickness is not uniform actually.  
On the other hand, it was pointed out that the transmittance of a force via a contact surface of a concrete slab 
with a steel column had the great influence on the concrete slab-steel frame interaction mechanism (Inoue et.al. 
1999). For the transmission of force, we set three group of dummy beam elements as shown in Figure 7(b).  
 
 Concrete slab 

t t' 

Flange plate 

Steel deck 
Stud bolt Neglect concrete 

 in this area   

 

Group 3 

Steel Column Group 1 

Group 2 

Flange plate 

Concrete slab 

 
    (a) only via stud bolts(Case of Deck)        (b) via contact surface of column 

Figure 7 Connection model 
 

Group 1 represents the contact behavior between concrete slabs and steel column. This group become to be 
inactive during tensile forces act on themselves like so-called gap element. Group 2 is set to avoid the extreme 
stress concentration at the point where Group 1 is connected. Group 3 is to prevent from concrete slabs’ 
penetration into flange plates. The beam elements in Group 1-3 are assumed to be rigid and ones in Group 2 
have only the bending rigidity and their axial rigidity is set to zero not to disturb axial stress condition in steel 
columns.  
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4. NUMEIRCAL EXAMPLES 
 
4.1 Outline of Specimen 
Here, we verify our modeling through the comparison of numerical results and experimental ones and consider 
the influence of the different type of modeling on the numerical results. An example is only single wide flange 
steel beam with a concrete slab tested by Inoue, Igarashi et.al. 1984. In this experiment, rigid steel end-plates are 
set at both end of a beam to represents steel columns. The geometry and dimension in this test are shown in 
Figure 8. The mechanical properties of steel plate, concrete and stud bolt is shown in Table 1. 
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Uniform thickness  t=50,100 
Deck plate type  t’=50 

Wide flange beam 
H-250x125x6x9 

Stud bolt: φ-13@90 
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(a) Analytical model         (b) Loading Condition 

Figure 8 Numerical examples [ unit : mm ] 
 

Table 4.1 Mechanical properties 

Web PL-6 σy=334MPa 
Flange PL-9 σy=295MPa 

Stud Bolt qs=36.2kN 
Concrete Fc=28.0MPa 

 
4.2 Numerical results and consideration 
At first, the result for only steel test specimen in cyclic loading is shown in Figure 9. This figure is the relation 
between MR+ML and θ ( See Figure 8(b) ). Thick line is the experimental result and another is numerical one. To  
understand clearly, we compare these results by 2 cycles.  
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 (a) 1st and 2nd cycle                             (b) 3rd and 4th cycle 
Figure 9 Comparison between Numerical and Experimental results – Steel –  

 
In both the smaller and the larger deformation level, the present solution is very close to the experimental result. 
Especially the present material model for steel does not have the yie ld plateau. Nevertheless, the good 
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agreement is also observed at initially yielding state. The matter means that the substantial yield stress decreases 
in the existence of the residual stress and the stress-strain relation falls into the round-house type. 
Next, compare the results for specimen with concrete slabs. It is expected that the condition of a concrete slab 
has the influence on the rigidity, strength and stress condition of a steel frame. It is important whether the 
behavior of composite beams with various type of slabs can be simulate by the present model, because it is our 
objective to predict the behavior of the full-sized damped steel building specimen accurately.  
Figure 10 shows the results for concrete slabs with two types of thickness ( (a)t=100mm, (b)50mm). The initial 
rigidity and post-yielding behavior with the present solutions generally agree with ones by the experimental 
results though slight difference after yielding is observed in the case of t=50mm.  
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(a) Thic kness t=100mm      (b) Thickness t=50mm 

0

1

2

3

4

0 0.005 0.01 0.015 0.02 0.025θ [rad]

M

[x10
2
kNm]

0

1

2

3

4

0.000 0.005 0.010 0.015 0.020 0.025θ [rad]

M

[x102kNm]

 
(c) Concrete slab with steel deck   (d) influence of Contact element 

Figure 10  Comparison between Numerical and Experimental results – Composite –  
 

The above two examples are composite beams with uniform concrete slabs. We show the performance of the 
present model for non-uniform concrete slabs with steel decks in Figure 10(c). It is understood that the present  
model is effective to such a composite beam.  
We emphasized that the transmission of forces via the contact surface between a concrete slab and a steel 
column has the great influence on the behavior of a composite beam. To evaluate the effect of the contact, 
compare results with the model in which all dummy groups (contact elements) in Figure 8 are eliminated with 
the present solution. Figure 10(d) shows ML-θ relationship. The result by the model without contact elements is 
fairly different from experimental ones and becomes to be close to MR by experiment. Figure 11 shows the 
distribution of the equivalent stress. The equivalent stress of the concrete slab near the column in the model with 
contact elements, became greater than one in the model without contact elements. As a result, the equivalent 
stress distribution in steel beams becomes different from each other (Figure 11(a)). In the model without contact 
elements, the neutral axis keeps the position at the mid-axis of a beam similar to an only steel beam model while 
the neutral axis moves to the upper direction in the model with contact elements. Therefore, the contact 
elements presented in this paper are necessary to simulate the behavior of composite beams accurately.  
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(a) Steel beam           (b) Concrete slab   

Figure 11 Distribution of equivalent stress (Upper: Taking account of contact elements, Lower: none ) 
 
Finally, we show the results for composite beams ( t=100mm) under cyclic loading. Figures 12(a)-(c) are the 
relation between MR+ML and θ. The result at each cycle is shown sequentially. Generally the results by the 
present model are close to the experimental ones. Particularly the rigidity and post-yielding behavior obtained 
by the present model agree with ones by the experiment in the smaller deformation level ( See Figure 12(a)-(b) ). 
However, the results have discontinuous points that are shown by  in the figures on the equilibrium path. The 
discontinuous points occur at the time of re-contact of the concrete slab to the column after separating them.  
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(c) 3rd cycle     (d) Influence of stud bolt material property 

Figure 12  Comparison between Numerical and Experimental results – Composite under cyclic loading – 
 

The discontinuous phenomenon is also observed in the experimental results but is not as remarkable as the 
present ones. The reason is that concrete near the contact surface is damaged and the in-plane rigidity of a 

 

Elastic Stud Bolt 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
concrete slab is degraded. We assumed that contact elements is rigid in this paper, but should consider the more 
suitable mechanical properties for them to simulate the collapse behavior of composite beams under cyclic 
loading like an earthquake. On the other hand, the slight difference for the stiffness between  both results, is 
observed at the start of unloading. The stiffness obtained by the experiment has reduced to one for the only steel 
specimen (Refer to Figure 9). It can be expected that the reduction is caused by the damage of concrete, 
especially concrete near stud bolts. The reduction depends on the mechanical characteristics of connection of a 
concrete slab to steel beams. For the sake of simulating such phenomenon, we introduced the especial hysteresis 
curve for stud bolts. To confirm the effect of the hysteresis curve of stud bolts, the present results are compared 
with the results by the model with elastic stud bolts in Figure 12(d). From this figure, it can be understood that 
the result of the present model represents the damage at the connection between concrete slabs and steel beams 
better than one of the elastic stud bolt. Therefore, more suitable mechanical model for the connection with stud 
bolts should be considered in future. 
 
5. CONCLUSION 
 
We have suggested the numerical modeling for steel beams with concrete slabs and verified the modeling 
through some numerical examples. By using our proposal modeling, the behavior of composite beams can be 
simulated and the rigidity and post-yielding behavior can be predicted highly accurately. We expect that the 
performance of our modeling is enough to predict the response of the damped steel building specimen which is 
sensitive to the rigidity etc. of a frame. Unfortunately the gap between numerical results and experimental ones 
was observed in the larger deformation level where concrete was damaged remarkably. To overcome such 
problem, we shall improve the mechanical characteristics of contact elements and stud bolts which involve the 
local damage of concrete in future. 
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