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ABSTRACT: 
 
The seismic evaluation of RC bridges requires a column model capturing the nonlinear behavior and the induced 
damage due to the combined effects of axial-shear-flexural interaction under earthquakes. In this paper, two 
hysteretic models are developed to model the flexural and shear responses of columns respectively. The models 
consist of two distinctive primary curves and a set of loading and unloading rules to describe the cyclic behavior 
of columns including pinching, stiffness softening, and strength deterioration etc. The shear and flexural 
responses are coupled together at the element level through equilibrium. The primary curves are generated based 
on MCFT for constant axial load. The coupled axial-shear-flexural interaction model is implemented as a user 
element in the FE program, ABAQUS. The model is validated against the experimental results from static cyclic 
pushover tests and dynamic shaking table tests. The analytical results showed excellent agreement with the 
experimental results. The model can be used to evaluate the realistic seismic response of a bridge system. 
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1. INTRODUCTION 
 
Columns are generally the most critical components in RC bridges whose failure will endanger the public safety 
and result in expensive repair cost. For the engineers to design the RC columns with sufficient capacity and 
ductility, a precise estimation of the seismic demands on columns must be made, requiring a deliberate element 
model considering the strength deterioration and stiffness degrading due to loading cycles, pinching behavior 
resulted from the crack opening and closing during loading reversals, as well as the interactions among the axial 
load, shear forces, and bending moments. Therefore, the adopted element model must take into consideration 
both the material damage and the axial-shear-flexural interaction (ASFI) in order to accurately predict the 
response of columns. 
 
Either concentrated hinge model or fiber section formulation can be used to model the columns. The former uses 
a combination of translational and rotational springs to simulate the shear and flexural responses of the columns 
at the element level. The latter controls the element responses directly at the material level. The concentrated 
hinge model accumulates the total or the nonlinear inelastic deformation of a RC element at its critical sections 
(e.g., the plastic hinge area at two ends) and use equivalent springs representing different sub-elements 
accounting for flexural, shear, and bond slip deformation to model the force-displacement relationship of the 
entire member (D’Ambrisi and Filippou, 1999). The model usually consists of a primary curve (or envelope of 
the hysteretic loops) and a set of unloading and reloading rules to control the response of each sub-element. 
They are empirical and approximate. The model accuracy relies on how the primary curves are defined, the 
elaborateness of the unloading and reloading rules applied, and on the reasonableness of the assumptions the 
models are based. However, the coupling of the axial, shear, and flexural responses is difficult to be included in 
these models due to the fact that primary curves and unloading/reloading rules of sub-elements are predefined as 
the element properties, which can not be easily adjusted during an analysis according to the responses in the 
other sub-elements. Another difficulty for most existing models lies in the discontinuities at some critical force 
levels or displacement levels owing to the model defects, resulting in convergence issues due to numerical 
instability. Nevertheless, the concentrated hinge models are popular among structural engineers because they are 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
relatively easy to be implemented and yield acceptable results. 
 
The fiber section formulation discretizes a RC section into a large number of fibers, whose material behavior 
and loading history is individually defined. This approach relates the deformation of the material to the applied 
external loads from the constitutive law directly, hence can model the axial-flexural interaction of the RC 
column at the material level. Classical flexural fiber section models (Spacone et al., 1996) do not include shear 
deformation and shear capacity degrading so that they failed to capture very well the responses of the shear 
dominate RC members under cyclic loadings. To overcome this deficiency, Petrangeli et al. (1999) introduces 
the shear strain field and the lateral strain field, in addition to the traditional axial strain field and section 
curvature field, to make the new fiber element capable of accounting for the complex interactions among the 
axial force, shear forces, and bending moments. The fiber model is computationally demanding and it is 
typically implemented as a force-based element for better accuracy making it difficult to be implemented in 
prevailing finite element (FE) programs, which are often consistent with the displacement-based theory. 
Although it is possible to obtain the stiffness matrix of the force-based fiber element by inversing its flexibility 
matrix, this stiffness matrix can induce some error or cause convergence problems in nonlinear analyses if it is 
inverted from the flexibility matrix of the previous time increment due to the fact that the forces and moments of 
the current time increment are unknown variables in the displacement-based FE programs. 
 
An axial-shear-flexural interaction (ASFI) scheme and two hysteretic models for flexural and shear reversals in 
RC columns, taking into consideration the axial load variation, the strength deterioration and stiffness degrading, 
and the pinching behavior, are proposed in this paper. The proposed scheme and hysteretic models have been 
implemented as a user element in a displacement-based FE program, ABAQUS. Comparisons between the 
analytical and the experimental results of a number of cyclic and shaking table tests of columns are made. The 
satisfactory matching of the data not only validates the developed user element but also demonstrates the 
feasibility of modeling the ASFI in the displacement-based FE programs. 
 
 
2. AXIAL-SHEAR-FLEXURAL INTERACTION (ASFI) SCHEME 
 
Ozcebe and Saatcioglu (1989) reported that shear displacement can be significant even if a RC member is not 
governed by shear failure. They also indicated that RC members with higher shear strength than flexural 
strength do not guarantee an elastic behavior in shear deformation. Based on their observation, RC members 
controlled by flexural behavior (as is the case in most of the current RC design codes) may still have significant 
shear displacement which goes into the inelastic stage and thus should not be left ignored. ElMandooh Galal and 
Ghobarah (2003) further pointed out that the dynamic variation of axial force in RC columns will cause 
significant change in the lateral hysteretic moment-curvature relationship and consequently the overall structural 
behavior. These observations dictate the importance of including nonlinear ASFI in the analysis of RC columns. 
 
2.1 Deficiency of Current Prevailing Numerical Models 
 
Table 1 summarizes the details of the tested columns used for validation in this paper. The first three are from 
static cyclic pushover experiments while the last one is from a shaking table test. Two common modeling 
techniques for nonlinear analysis of RC columns are examined. Fig. 1 (left) compares the experimental results 
(blue lines) of column TP-021 (Yoneda et al., 2001) and the simulated results (red lines) from a commercial FE 
program, ABAQUS, using the Timoshenko beam elements with nonlinear moment-curvature relationship and 
constant shear stiffness. Fig.1 (right) compares the experimental results (blue lines) of the same column and the 
simulated results (red lines) from an open source FE program, OpenSees, using the force-based fiber element 
formulation aggregated with linearly elastic shear modulus. It is shown that the result from the first model by 
capturing the nonlinear flexural behavior of columns is far away from the realistic column response while the 
second model by capturing the axial-flexural interaction, provides a much improved prediction yet still fails to 
capture the often observed pinching behavior and strength deterioration due to cyclic loading reversals.  
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Figure 1 Analytical hysteretic responses using nonlinear Timoshenko beam and fiber element for TP-021 
 
Table 1 Specimen geometry, reinforcement, material properties, and applied load of the examined column tests 
Column 
Index 

Column 
Size (mm) 

Column 
Height 
(mm) 

Number 
of Steel 
Rebars 

Longitud. 
Steel 

Diameter 

Transverse 
Steel 

Diameter 

Longitud. 
Reinforce. 

Ratio 

Transverse 
Reinforce. 

Ratio 

fy 
(MPa) 

fc’ 
(MPa) 

Axial 
Load 
(kN) 

Axial 
Load 
Ratio 

TP-021 400 circ. 1350 12 16 6 1.89 % 0.26 % 374 30.0 185 5.0 % 
TP-031 400x400 1350 20 13 6 1.58 % 0.79 % 374 22.9 470 12.8 % 
TP-032 400x400 1350 20 13 6 1.58 % 0.79 % 374 23.0 -170 -4.6 % 

UNR-9F1 406.4 circ. 1828.8 20 12.7 6.35 1.95 % 1.00 % 448 37.4 355.86 10.0 % 
 
2.2. Proposed Axial-Shear-Flexural Interaction Scheme 
 
To mend for the deficiencies in the current models, an analysis scheme is developed to include the nonlinear 
ASFI. This scheme couples the axial force, shear forces, and bending moments at the section level, similar to the 
fiber section formulation, and produces much improved results. The basic idea is to introduce the ASFI into the 
scheme through the primary curves, which can be perceived as the constitutive law of the RC element. The total 
primary curve of a column is equivalent to its monotonic pushover curve by considering the combined effects of 
axial, shear and moment loads. It is broken into a flexural and a shear primary curve that can be applied to the 
flexural and shear springs in the proposed scheme. This is achieved by adopting the modified compression field 
theory (MCFT) (Vecchio and Collins, 1988). Given the geometry of the target RC section, the reinforcement 
configuration, the material properties, and the applied external loads, MCFT can yield the moment-curvature 
( M φ− ) and the shear force-shear strain (V γ− ) relationships of the section subject to the given loading 
conditions. In a cantilever column, although the axial and shear forces along the element might be the same, the 
induced bending moment at each section is different. Therefore, the derived M φ−  and V γ−  curves are 
different due to the varying combinations of axial, shear and moment loads at each section. The flexural 
deformation (Δf) and shear deformation (Δs) can then be obtained by integrating the curvature and shear strain 
in each section along the column. Subsequently, one can obtain the bending moment-to-rotation angle (M-θ) and 
shear force-to-shear displacement (V-Δs) relationships. They can be regarded as the primary curves for the 
flexural and shear springs respectively. It should be noted that the MCFT is a force-based approach which will 
stop once the peak strength of the section is reached (i.e., starting to undergo some softening). To estimate the 
descending branch of the primary curves, empirical equations for flexural and shear displacement can be used as 
alternatives (Sezen, 2008). The detailed analytical procedure is illustrated in Fig.2. If the inflection point of a 
RC column is known (or simply assuming to be at the mid height of the column), the column can be broken at 
its inflection point into two cantilever columns and simulated by a rigid bar and a combination of flexural 
sub-elements (F-UELs) and shear sub-elements (S-UELs), as demonstrated in Fig.2. The primary curves for the 
upper springs and lower springs can be the same if the inflection point is at the middle of the column, or can be 
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different if not.  

 
Figure 2 Implementation of the ASFI scheme 

 
3. HYSTERETIC MODELS  
 
3.1. Review of Existing Hysteretic Models 
 
The most well-known flexural hysteretic model is probably the Takeda model (Takeda et al. 1970), whereas 
Qzcebe and Saatcioglu’s model (1989), taking into consideration the axial load variation, the strength 
deterioration, the stiffness degrading, and the pinching behavior, is pioneering for estimating the shear responses 
of RC members. To minimize the work of computational coding for the flexural and shear spring subroutines, it 
is preferred to compose the subroutines for both sub-elements using the same numerical model framework, with 
the least amount of modification made to each sub-element to account for its specific unloading/reloading 
characteristics. For this reason, the Ozcebe and Saatcioglu’s shear model is selected as the basis, combined with 
the Takeda model and some improvements, to make up two new hysteretic models for the flexural and shear 
responses.  
 
The aforementioned models depict the general rules for flexural and shear reversals; however, to put the models 
into FE applications, the potential discontinuity resulted from some specific loading conditions must be 
precluded. According to the equations in Qzcebe and Saatcioglu’s model, the unloading stiffness will become 
zero or negative when the ductility level is equal to or greater than 14.29. Those equations for unloading 
stiffness must be revised first to allow for possible larger ductility levels. In addition, depending on the shape of 
the primary curve and the locations of crack and yield points on it, it is possible in their model that the residual 
displacement of a positive unloading branch turns out to be negative, and vice versa, due to an inadequate small 
unloading stiffness. To fix this problem, a minimum unloading stiffness originated from the idea in Takeda’s 
model is applied in the proposed model. Moreover, when the element is reloaded previously from the opposite 
side, the pinching stiffness is controlled by a reference point, which is a fraction of the peak shear of previous 
unloading branch. If this peak shear is very small, the calculated pinching stiffens will be very close to zero and 
thus not reasonable. Finally, for the cases when the “pinching reference point” falls below the cracking shear 
level, resulting in a very large crack closing displacement, the hardening stiffness might become negative and 
cause serious errors. All of these model defects will induce convergence problems in the FE programs and fail 
all the analyses accounting for ASFI. Fig. 3 depicts the aforementioned model defects graphically. 
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Figure 3 Examples of model defects in Ozcebe & Saatcioglu’s shear hysteretic model. 

 
3.2. Proposed Shear and Flexural Hysteretic Models 
 
The problem with Ozcebe & Saatcioglu’s shear reversal model of yielding a zero or negative stiffness when 
ductility level is equal to or greater than 14.29 is fixed by introducing a new set of stiffness degrading equations. 
For shear model, the revised unloading stiffness above the crack shear level is given by Eqn. 3.1, and below by 
Eqn. 3.2. The new equations extend the maximum allowable ductility level to 50.0, while maintaining the 
stiffness very close to Ozcebe and Saatcioglu’s original model under low ductility level. Constant k2 in the 
revised equations is the same as those defined in the original model and is illustrated in Fig.4. Comparisons of 
the normalized unloading stiffness between the revised and original equations are displayed in Fig.5. 
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Similar equations for flexural reversal model is also proposed and calibrated with over 10 static cyclic pushover 
tests data. For unloading above the crack moment level, the stiffness is given by Eqn. 3.3, and below by Eqn. 
3.4. Since there is no significant pinching behavior in the flexural response, the pinching stiffness in the original 
shear model is replacement by Eqn. 3.5 in the proposed moment reversal model, subjected to a minimum 
stiffness k5. As for the stress hardening branch (i.e., reloading above Mcr), the hardening reference point, 
accounting for the strength deterioration due to loading cycles, is a fraction of the maximum peak point, and 
given by Eqn. 3.6. 
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where n = number of cycles in one direction at its maximum rotation level, θm 
 Mp = the bending moment on primary curve corresponding to θm 
 

 
     Figure 4 Reference stiffness               Figure 5 Revised vs original unloading stiffness 

 
Minimum unloading stiffness, k3, k4 and k5, applied to both hysteretic models to prevent the extraordinary flat 
unloading slopes are demonstrated in Fig.4. In Fig.4, k3 is the slope connecting the onset point of unloading 
branch to the crack point on the opposite side; k4 is the slope connecting the point on the current unloading 
branch at the crack force level to the crack point on the opposite side; and k5 is the slope connecting the point on 
the current unloading branch at the zero force level to the crack point on the opposite side. Unlike k1 and k2, 
which are constants, k3, k4 and k5 are variables depending on the location of the onset of current unloading 
branch. 

 
Figure 6 Remedies for the defects in shear hysteretic model 

 
To prevent the error of nearly-zero pinching stiffness in the shear hysteretic model from occurring, an 
IF-statement is added into the subroutines to check that when the peak shear of previous unloading branch is 
smaller than the crack shear, the last peak point whose shear is larger than the crack shear level should be used 
as the “previous peak” instead. Regarding the fourth source of aforementioned model defects, a make-up rule is 
applied that should the “pinching reference point” fall below the crack shear level, the “previous peak” is 
enforced to serve as the “pinching reference point”. This additional make-up rule is appropriated, because more 
than 95% of possibility this specific case takes place at the locations where the unloading shear forces barely 
exceed the crack load. For the rest 5% of cases in which the column is seriously damaged or it undergoes 
considerably softening so that the pinching reference point falls below the crack shear level, the make-up rule 
should not be applied and can be opted out by putting in another IF-statement. The FE program, however, in 
such cases will fail very soon due to convergence difficulty, and it can be perceived as the failure of the RC 
column. Remedies for these two shear model defects are illustrated in Fig.6. 
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4. MODEL VERIFICATION 
 
The proposed hysteretic flexural and shear models are implemented as a single user element in ABAQUS. 
Although the axial force, shear forces, and bending moments seem to be coupled only in the primary curves, 
they do have interaction with each other in the hysteretic responses because the global and local equilibrium 
must be hold at any time. In this research, to focus on the accuracy of proposed hysteretic models, the axial 
force is kept constant for simplification purpose. The effects of axial load variation can later be included in 
again, through the idea introduced by Lee and Elnashai (2002) with some modifications. 
 
The analytical results obtained from ABAQUS adopting the ASFI scheme and the developed user element is 
compared with the static cyclic pushover tests and a dynamic shake table test listed in Table 1. Fig. 7 compares 
the simulated and experimental results of cyclic tests of columns TP-031 and TP-032 (Sakai and Kawashima, 
2000). These two tests are essentially identical except different axial loads applied. Specimens TP-031 and 
TP-032 were subjected to a compression of 12.8% and a tension of 4.6% of gross compressive strength of the 
section respectively. The experiment results showed that the axial load variation in the column has a significant 
influence on the lateral hysteretic responses. Dynamic validation of the models is demonstrated in Fig.8 by 
comparing the simulated and experimental results of column UNR-9F1 (Laplace et al., 1999) under the intensity 
of 2.5 times the 1941 El Centro earthquake record. This is the sixth stage of the multi-event of earthquake 
simulation (9 earthquakes in a series) with increasing motion intensity ranging from 0.33 to 4.0 times the ground 
motion of the 1941 El Centro earthquake record. The excellent agreement between the predicted and 
experimental results shown in Fig. 7 and 8 validate that the developed user element is capable of modeling the 
axial-shear-flexural interaction behavior of columns under either static cyclic or dynamic loadings. 
 

 
Figure 7 Hysteretic responses of column tests TP-031 (left) and TP-032 (right). 

 
5. CONCLUSIONS 
 
In this paper an ASFI scheme is proposed and two hysteretic models are developed to represent the shear and 
flexural responses of columns. The proposed ASFI scheme and hysteretic models have been implemented as a 
user element in the FE program, ABAQUS. Comparison of the analytical results with the experimental data 
shows that the proposed models and the developed user element are capable of modeling the responses of RC 
columns very well under either static or dynamic loadings. The comparisons also demonstrate the significant 
effects of axial load variation on the lateral responses of RC columns, which support the argument that ASFI is 
very important in the nonlinear analysis of RC columns. 
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Figure 8 Comparison of the analytical and experimental results of UNR-9F1 shake table test, Stage VI 
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