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ABSTRACT 
 
As an extension of static pushover analysis into nonlinear dynamic analysis to estimate more thoroughly 
structural performance under seismic loads, incremental dynamic analysis (IDA) has been widely applied in the 
field of Performance-Based Earthquake Engineering (PBEE). A single-record IDA cannot fully capture the 
behavior that a building may display in a future earthquake event. Therefore, the multi-record IDA is developed 
to consider the record-to-record variations in earthquake ground motions. However, neither single-record IDA 
nor multi-record IDA can take into account the random system properties of structures. In this paper, a 
stochastic IDA method is proposed, which is a coupling of point estimation method (PEM) based on Nataf 
transformation for approximating the statistical moments of random functions, and single-record IDA approach. 
The multi-variable random IDA curve is developed from single-variable random IDA ones according to the 
sampling strategy in PEM, and the fractile IDA curves are also advanced. The proposed methodology is applied 
in R.C. frame structures. A three-bay and five-storey plane R.C. frame is taken as an example in case study. It is 
demonstrated by this example that the approach proposed in this paper is an efficient and accurate tool for 
probabilistic seismic demand and capacity analysis of structures considering the inherent random system 
properties. 
 
KEYWORDS: Incremental Dynamic Analysis, Nonlinear Dynamic Analysis, Random System Property, Point 
Estimation Method, Performance-Based Earthquake Engineering 
 
1. INTODUCTION 
 
Incremental dynamic analysis (IDA) is the dynamic equivalent to a static pushover analysis. Given a structure 
and a ground motion, single-record IDA is done by conducting a series of nonlinear time-history analyses. The 
intensity of the ground motion, measured using an IM, is incrementally increased in each analysis. An 
engineering demand parameter (EDP), such as global drift ratio, is monitored during each analysis. The extreme 
values of an EDP are plotted against the corresponding value of the ground motion IM for each intensity level to 
produce a dynamic pushover curve, namely single-record IDA curve, for the structure and the chosen 
earthquake record. A single-record IDA cannot fully capture the behavior that a building may display in a future 
earthquake event. Therefore, the multi-record IDA has been developed to consider the record-to-record 
variations in earthquake ground motions. Nowadays, IDA has already been an important tool for seismic 
demand and capacity assessment in the field of Performance-Based Earthquake Engineering (PBEE) 
(Fragiadakis et al., 2006; Mandel et al., 2007). Federal Emergence Management Agency guidelines (FEMA350, 
FEMA351, 2000) accepted the IDA method and took it as the state-of-the art method to determine the global 
collapse capacity of structures. 
The idea of IDA was originally proposed by Bertero (1977). From then on, Cornell and his co-workers 
(Bazzurro & Cornell, 1994; Luco & Cornell, 1998, 2000) have been developing and improving the IDA method. 
Vamvatasikos and Cornell (2002, 2004) systematically summarized the basic theory and methodology of IDA, 
developed an applied IDA, and proposed a simple SPO2IDA analysis method (2005, 2006). 
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It is well known that there exist many factors influencing structural properties, such as structural configuration, 
structural dynamic properties (stiffness and damping), geometric sizes of structural elements, constitutive 
relationships of structural materials, modeling uncertainty of structures, and so on. Therefore, the system 
properties of structures are random in nature. However, the prevalent IDA method, whether it’s a single-record 
IDA or a multi-record IDA, cannot considered the random system properties of structures. To consider this kind 
of randomness, in this paper, a stochastic IDA method is developed, which combines point estimation method 
(PEM) based on Nataf transformation (Liu & Der Kiureghian, 1986) with single-record IDA method. The 
proposed methodology is applied in R.C. frame structures. A three-bay and five-storey plane R.C. frame is taken 
as an example in case study. 
 
2. POINT ESTIMATION METHOD BASED ON NATAF TRANSFORMATION  
 
2.1. Nataf Transformation and its Application to Estimating Statistical Moments of Random Functions 
Point estimation method (PEM) was proposed by Rosenblueth (1975) to approximate the lower-order moments 
of functions of random variables. It is a special case of numerical quadrature based on orthogonal polynomials. 
For normal variables, it corresponds to Gauss-Hermite quadrature. While the point estimate method is popular 
in practice, it has many detractors. Numerous modifications or improvements have been made for the original 
PEM. However, the early developments of PEM are all undertaken in the original space of random variables, 
requiring the higher order moments of random variables without considering the distribution information. To 
overcome these shortcomings, Zhao and Ono (2000) introduced a new point estimation method based on 
Rosenblatt transformation (Hohenbichler & Rackwitz, 1981), so that the Gauss-Hermite quadrature can be 
completed in standard normal space. Unfortunately, Rosenblatt transformation needs the joint probability 
distribution information of random variables; actually, it is difficult to get the joint PDF of random variables in 
practical engineering applications. Another transformation method, namely Nataf transformation (Liu & Der 
Kiureghian, 1986), is popular in the fields of structural reliability and probability analysis, since it only needs 
the marginal probability distribution information of each random variables and the covariance between them, 
which is easy to get in practice. Therefore, in this paper, the Nataf transformation is introduced into Zhao-Ono 
point estimation method. 
The forward Nataf transformation NT can be denoted by 

 1 1
0: [ ( )]NT − −= Xu L Φ F x  (2.1) 

where, x  and u  are the realizations of n dependent non-normal random variables X  and independent 
standard normal random variables U , respectively; 1()−Φ  represents the column vector composed of all 
inverse functions of standard normal random variables; ( )XF x  is the column vector comprised of CDFs of 
random variables ( 1, , )iX i n= ; 0L  is the lower triangle matrix of Choleski decomposition of correlation 

coefficients matrix 0R  of dependent normal random vector 1[ ( )]−= XY Φ F x , i.e. 0 0 0
T=R L L ; the 

relationships between the elements 0,ijρ  of 0R  and the elements ijρ  of R , the correlation coefficients 
matrix of X , are 

 0,ij ij ijFρ ρ=  (2.2) 

where, the coefficient ijF  is function of correlation coefficient ijρ  and marginal distributions ( )
iX iF x  and 

( )
jX jF x  of random variables iX  and jX . In general, 1ijF ≥ . Liu and Der Kiureghian (1986) gave the 

practical formula for computing coefficient ijF  corresponding to different probability distributions. 

The inverse Nataf transformation 1
NT − can be denoted by 

 1 1
0: [ ( )]NT − −= Xx F Φ L u  (2.3) 

where, 1( )− ⋅XF  represents the column vector composed of all inverse CDFs of random 
variables ( 1, , )iX i n= ; ( )⋅Φ  denotes the column vector comprised of all CDFs of standard normal random 
variables. 
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For a random function ( )Z g= X , we can make use of the inverse Nataf transformation to estimate its 
statistical moments: 

 1( ) ( ) ( ) ( )Z N ng f d g T dμ ϕ−⎡ ⎤= = ⎣ ⎦∫ ∫Xx x x u u u  (2.4a) 

 [ ] { }222 1( ) ( ) ( ) ( )Z Z N Z ng f d g T dσ μ μ ϕ−⎡ ⎤= − = −⎣ ⎦∫ ∫Xx x x u u u  (2.4b) 

 [ ] { }1( ) ( ) ( ) ( ) 2
kkk

kZ Z Z N Z ng f d g T d kα σ μ μ ϕ−⎡ ⎤= − = − >⎣ ⎦∫ ∫Xx x x u u u  (2.4c) 

where, Zμ  and Zσ  are mean value and standard deviation of Z , respectively; kZα  is the kth dimensionless 
central moment of Z ; ( )fX x  is the joint PDF of X ; ( )nϕ u is the joint PDF of standard normal vector U . 
 

2.2 Point Estimation for Single-Variable Function 

For a single-variable function ( )Z g X= , Nataf transformation reduces to iso-probability marginal 
transformation, so Eq. (2.4) becomes 

 { }1[ ( )] ( )Z Xg F u u duμ ϕ−= Φ∫  (2.5a) 

 { } 22 1[ ( )] ( )Z X Zg F u u duσ μ ϕ−⎡ ⎤= Φ −⎣ ⎦∫  (2.5b) 

 { }1[ ( )] ( ) 2
kk

kZ Z X Zg F u u du kα σ μ ϕ−⎡ ⎤= Φ − >⎣ ⎦∫  (2.5c) 

The integration in Eq. (2.5) can be approximated by making use of Gauss-Hermite numerical quadrature in 
standard normal space: 

 { }1

1

[ ( 2 )]
m

j
Z X j

j

w
g F xμ

π
−

=

≈ Φ∑  (2.6a) 

 { } 2
2 1

1

[ ( 2 )]
m

j
Z X j Z

j

w
g F xσ μ

π
−

=

⎡ ⎤≈ Φ −⎣ ⎦∑  (2.6b) 

 { }1

1

[ ( 2 )]
m k

jk
kZ Z X j Z

j

w
g F xα σ μ

π
−

=

⎡ ⎤≈ Φ −⎣ ⎦∑  (2.6c) 

where, ( 1, , )jx j m=  is the integration points of Gauss-Hermite quadrature, jw  is the weights of 
Gauss-Hermit quadrature, m  is the number of integration points. 
 
2.3 Point Estimation for Multi-Variable Function 
For a multi-variable function ( )Z g= X , two function approximation approaches can be used: 

 
1

( )
n

i

i

ZZ g Z
Z=

⎛ ⎞
′≈ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∏μ

μ

X  (2.7) 

 
1

( ) ( )
n

i
i

Z g Z Z Z
=

′′≈ = − +∑ μ μX  (2.8) 

in which, 
 1( ) ( , , , , )i nZ g g μ μ μ= =μ μ  (2.9) 

 1
1 2 1 1( ) ( ) ( , , , , , , , )i N i i i i i nZ g T G G u u u u u uμ μ μ μ μ

−
− +⎡ ⎤= = =⎣ ⎦u u  (2.10) 

where, 1()NT −  denotes inverse Nataf transformation; μ  represents the vector in which all the random 
variables take their mean values; iu  represents the vector in which only iu  is a random variable, while other 
variables take the corresponding transformed values of their mean values in standard normal space; ( )ju j iμ ≠  
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is the jth element of the transformed vector μu  who corresponds the vector μ  in standard normal space u ; 

1( ) [ ( )]NG g T −=u u  is the formulation of random function ( )g x  in standard normal space based on Nataf 
transformation. 
Based on the product-rule as shown in Eq. (2.7), the mean value and the kth central moment of the function can 
be estimated: 

 
1

i
n

Z
Z

i

Z
Z
μ

μ
=

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
∏μ

μ

 (2.11a) 

 
1

( )
Kn
iK K

K
i

E Z
E g Z

Z=

⎡ ⎤⎣ ⎦⎡ ⎤ ≈⎣ ⎦ ∏μ
μ

X  (2.11b) 

Based on the non-product rule as shown in Eq. (2.8), the mean value and variance of the function can be 
estimated: 

 
1

( )
i

n

Z Z
i

Z Zμ μ
=

≈ − +∑ μ μ  (2.12a) 

 2 2

1
i

n

Z z
i

σ σ
=

≈ ∑  (2.12b) 

In Eqs. (2.11) and (2.12), iμ  and iσ  are mean value and standard deviation of iG  by using point-estimation 
of single-variable function. 
 
3 IDA WITHOUT CONSIDERING RANDOM SYSTEM PROPERTIES 
 
IDA is a parametric analysis method to estimate more thoroughly structural performance under seismic loads. 
For single-record IDA, one ground motion record is successively scaled to multiple spectral acceleration levels 
and the resulting maximum inter-storey drift angles are calculated in each case. The IDA curve connects the 
resulting inter-storey drift angles corresponding to the ground motion record. The procedure of single-record 
IDA without considering random system properties is summarized as follows: 
Step 1. Choose one ground motion record, and select the Intensity Measure (IM) for the ground motion. There 
are many measures which can characterize the ground motion intensity, herein we choose the first mode spectra 
acceleration Sa(T1) as an IM. 
Step 2. Determine the scaling rule, and adjust the levels of iλ : 

 ( )
_ ( ) ( )i
g iu t a tλ=  (3.1) 

where, ( )a t  is the original ground motion record, iλ  is a scaling parameter, ( )
_ ( )i
gu t  is the ground motion 

after adjusting. The scaling rule can be divided into two kinds: equal-step rule and unequal-step rule. 
Vamvatasikos and Cornell (2002) proposed a Hunt & Fill rule based on unequal-step rule. 
Step 3. Choose an Engineering Demand Parameter (EDP). EDPs can be divided into global EDPs and local 
EDPs. On the other hand, EDPs can also be divided into load-based EDP, displacement-based EDP and 
damage-based EDP. 
Step 4. Perform parametric analysis. Subject the structural model to the group of ground motions ( )

_ ( )i
gu t , and 

an IDA curve of EDP versus IM can be produced. IDA curves can be divided into global IDA curves and local 
IDA curves. In order to save computation resource, the technique of spline interpolation is often made use of. 
For multi-record IDA, we only need to choose a group of ground motion records and repeat the steps above. 
 
4 IDA CONSIDERING RANDOM SYSTEM PROPERTIES 
 
4.1 Basic Methodology 
In this paper, the EDP is seen as an implicit and complex function of random vector X : 

 1 2( ) ( , , , )nEDP g g X X X= =X  (4.1) 
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where, ( )g ⋅  is the function which characterizes the relationship between EDP and X , and it is generally 
implicit; [ ... ]T

1 2 nX ,X , ,X=X  is the basic random variables which influence structural properties, such as 
material strength, geometry size, structural modeling uncertainty, and so on. 
Since IDA can determine the relationship between EDP and IM, if random system properties are taken into 
account, then the relationship between of EDP and IM will be a complex and implicit random function. 
The mean value EDPμ  and the nth central moment EDPnM  of EDP can be calculated by 

 EDP ( ) ( )g f dμ = ∫ X X X  (4.2) 

 
EDP

[ ( ) ] ( ) 2n
n gM g f d nμ= − ≥∫ X X X  (4.3) 

where, ( )f X  is the joint PDF of X .  
In general, we can not directly obtain EDPμ  and EDPnM  by Eq. (4.2) and Eq. (4.3) for the highly implicit 
function ( )g X . In this paper, a kind of stochastic IDA method considering random system properties is 
proposed, which combines the above-mentioned point estimation method based on Nataf transformation, with 
the singe-record IDA method. We call it as a stochastic IDA method, which has two key issues, one of which is 
how to consider random system properties, the other of which is how to estimate the statistical moments of EDP. 
If random system properties are considered, we will firstly determine structural random variables and their 
distribution information. Then, Gauss-Hermite integration points and their corresponding weights are selected. 
The structural sample matrix  ( 1,2,..., ; 1,2,..., )ij i = n j = mu  in standard normal space is thus obtained, where, 
i  is the index of random variable, j  is the index of Gauss-Hermite integration points, n  is the number of 
random variables, and m  is the number of integration points. And then, the inverse Nataf transformation 

1( )N ijT − u  is made use of, and structural sample matrix ( 1,2,..., ) ( 1,2,..., )ij i = n j = mx  in general random 
space is obtained. If the matrix is combined with structural finite element models, then n groups and m×n 
structural random samples will be obtained. 
The statistical moments of an EDP can be divided into two parts: single-variable statistical moments and 
multi-variable statistical moments. Carry on IDA for n groups of structural random samples, and then n groups 
of EDP results will be obtained. The single-variable mean value and standard variance of EDP by Eq. (2.6) is 
estimated for each variable. Based on the single-variable statistical moments of EDP for each variable, the 
multi-variable mean value and standard variance of EDP can be approximated by Eq. (2.10) and Eq. (2.11). 
During the analysis procedure above, a series of dispersed IDA curves are depicted, which are named as 
stochastic IDA curves. The flowchart of the IDA method considering random system properties is summarized 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Flow chart of stochastic IDA method considering random system properties 

 
4.2 Random IDA Curves 
The random IDA curves by stochastic IDA method considering random system properties can be divided into 

Select Ground 
motion records 
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IDA curves 

Point estimation 
method 
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three categories: single-variable IDA curves, multi-variable IDA curves, and fractile IDA curves. 
 
4.2.1 Single-variable Random IDA Curves  
Make IDA for m×n structural random samples, then n groups and m×n IDA curves will be obtained. Based on 
the single-variable statistical moments of EDP, n single-variable IDA curves are attained. As a result, n+1 IDA 
curves can be gained for each random variable, which are named as single-variable random IDA curves. The 
dispersion of single-variable random IDA curves reflects the individual effects of the basic random variable for 
structural dynamic responses. 
 
4.2.2 Multi-variable Random IDA Curves 
Based on the multi-variable statistical moments of EDP, multi-variable mean IDA curve will be gained. 
Combine it with n single-variable mean IDA curves obtained above, then multi-variable random IDA curves can 
be acquired. The dispersion of multi-variable random IDA curves reflects the total effects of random system 
properties on structural dynamic responses. 
 
4.2.3 Fractile IDA Curves 
Through IDA considering random system properties, the mean value EDPμ  and standard variation EDPσ  of 
EDP have been known. Then the logarithmic mean value EDPλ  and logarithmic standard variance EDPζ  of 
EDP can be computed by 

 EDP
EDP 2

EDP

ln
1
μλ
δ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (4.4) 

 ( )2
EDP EDPln 1ζ δ= +  (4.5) 

where, EDP EDP EDP/δ σ μ=  is the COV of the EDP. EDP is often assumed to submit to log-normal distribution 
(Cornell, et al, 2002), as a result, it’s easy to draw 84% fractile IDA curve, 16% fractile IDA curve and 50% 
fractile IDA curve, respectively, such that 

 50% EDP

EDP

ln EDP 50%λ
ζ

⎛ ⎞−
Φ =⎜ ⎟
⎝ ⎠

 (4.6a) 

 84% EDP

EDP

ln EDP 84%λ
ζ

⎛ ⎞−
Φ =⎜ ⎟
⎝ ⎠

 (4.6b) 

 16% EDP

EDP

ln EDP 16%λ
ζ

⎛ ⎞−
Φ =⎜ ⎟
⎝ ⎠

 (4.6c) 

where, 50%EDP , 84%EDP and 16%EDP  are the values of EDP  on 50%, 84% and 16% fractile IDA curves.  

Because of Eq. (4.6), we can get 50%EDP , 84%EDP  and 16%EDP  by 

 50% EDPEDP exp( )λ=  (4.7a) 
 84% EDP EDPEDP exp( )λ ζ= +  (4.7b) 
 16% EDP EDPEDP exp( )λ ζ= −  (4.7c) 

Based on Eq. (4.7b) and Eq. (4.7c), we can compute EDPζ  by 

 [ ]EDP 84% 16%
1 ln EDP ( ) ln EDP ( )
2

x xζ = −  (4.8) 

EDPζ  is the logarithmic deviation of EDP, it can show how much the random system properties affect the 
structural seismic performance. As a result, the dispersions of three fractile IDA curves are helpful to evaluate 
the influence of the random system properties on structural dynamic responses. 
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5 APPLICATION OF THE METHODOLY TO A R.C. FRAME STRUCTURE 
 
5.1 Basic Data 
A five-storey and three-bay R. C frame is taken as an example. It is designed according to Chinese seismic 
design code of Buildings (GB50011-2001). The load distributions and the elevation of the structure are shown in 
Figure 2. 
 

 
 
 

 
Figure 2 Five-storey and three-bay R.C. frame 

 
Table 5.1 Statistics of random variables 

Distribution parameters Distribution parameters Variable  Mean value Variance value Variable  Mean value Variance value 
2(N/mm )yf  384.80 28.59 2(N/mm )crf  27.32 4.44 

2(N/mm )E  204000 2040 cε  0.0022 0.000308 
2(N/mm )cf  26.10 4.44 cuε  0.021 0.00274 

 
Table 5.2 Random samples of the structure 

Structural samples Random  
variables 1 2 3 4 5 6 7 

2(N/mm )yf  384.80 417.80 351.80 452.46 317.14 492.02 277.58 
2(N/mm )E  204000 206355 201645 208828 199172 211651 196349 
2(N/mm )cf  26.10 31.23 20.97 36.61 15.59 42.75 9.45 
2(N/mm )crf  27.32 32.44 22.19 37.83 16.81 43.97 10.67 

cε  0.0022 0.0026 0.0018 0..0029 0.0015 0.0034 0.0010 

cuε  0.021 0.024 0.018 0.027 0.015 0.031 0.011 
 
El Centro ground motion record is selected as the ground motion record, its original intensity measures are: 
PGA= 0.29g；Sa(T1, 5%) = 0.67g. Sa(T1, 5%) is chosen as the IM herein. 
For convenience, only random material properties are considered, which include six basic random variables: 
yield strength yf  and initial elastic modulus E  of steel; compressive strength cf , crushing strength crf , strain 
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at compressive strength cε , strain at crushing strength cuε  of concrete. The statistics of the variables are listed 
in Table 5.1. All variables are assumed to follow normal distribution, and to be independent on each others. 
Seven estimation points are chosen. The random samples of the structure in general random space are generated 
as shown in Table 5.2. Combine the matrix with the structural finite element model, 7×6=42 structural random 
samples are obtained. 
 
5.2 Single-variable Random IDA Curves  
Six groups of single-variable random IDA curves are shown in Figures 3 to 8. 
 
5.3. Multi-variable Random IDA Curves 
The multi-variable random IDA curves are shown in Figure 9. From Figure 9 we can see that the mean IDA 
curves by product-rule and by non-product rule are approaching to each other. However, the multi-variable 
mean IDA curves are in different shapes, compared with the single-variable mean IDA curves. Therefore, it’s 
necessary to investigate the mean performance by IDA method considering random system properties. 
 
5.4. Fractile IDA Curves 
The fractile IDA curves are shown in Figure 10. From Figure 10, we can derive two conclusions. First, before 
structural collapse, fractile IDA curves get close, so the random material properties don’t influence the response 
of the structure very much. It’s valid to make IDA without considering random material properties. Second, 
when structure is approaching the state of collapse, fractile IDA curves disperse widely, therefore, it’s necessary 
to investigate structural collapse considering random material properties. 
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Figure 3 Random IDA curves for yf  Figure 4 Random IDA curves for E  
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Figure 5 Random IDA curves for cf  Figure 6 Random IDA curves for crf  
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Figure 7 Random IDA curves for cε  Figure 8 Random IDA curves for cuε   
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Figure 9 Multi-variable random IDA curves  
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Figure 10 Fractile IDA curves 

 
6. CONCLUSION 
 
In this paper, a stochastic IDA method combining point estimation method based on Nataf transformation with 
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single-record IDA approach is proposed. The methodology is applied to a five-storey and three-bay R.C frame 
structure considering random material properties. The conclusions are summarized as follows. 
(1) The yield strength yf  of Steel and the compressive strength cf  of concrete has great influences on the 
dynamic responses of the structure.  
(2) Before structural collapse, the random material properties don’t influence structural responses very much. 
It’s valid to make IDA without considering structural material random property in this case. When structure is 
approaching the state of collapse, fractile IDA curves disperse widely, so it’s necessary to study structural 
collapse considering random material properties. 
(3) The proposed method doesn’t consider the randomness in ground motions. It is necessary to make further 
investigation on IDA considering both ground motion record-to-record variations and random system properties 
of structures. 
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