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ABSTRACT 

 

Reinforced concrete (RC) columns with insufficient transverse reinforcement and non-seismic reinforcement details 

are vulnerable to shear failure and loss of axial load carrying capacity. With an aim of developing a macro model to 

simulate cyclic lateral load-deformation performance, the behavior of non-ductile RC columns is modeled by 

combining deformation components due to flexure, reinforcement slip and shear. Individual deformation component 

models developed for monotonic lateral loads serve as envelopes or primary curves for respective cyclic responses. 

Based on a comparison of their predicted shear and flexural strengths, the columns are classified into five general 

categories and total monotonic and cyclic response is obtained by combing the three deformation components 

according to a set of rules specified for each category. The proposed monotonic and cyclic response models are 

compared with the data from various experimental studies on columns having flexural failure with very limited or 

no shear effects, flexure and/or shear failure following the flexural yielding, and shear failure prior to flexural 

yielding. The predicted and experimental response of columns failing primarily in shear and flexure were 

comparable. Similarly, the hysteretic response of the column with axial load failure was captured reasonably well 

by forcing the monotonic response envelopes to degrade linearly between the peak strength and the point of axial 

load failure. Although, the research is focused on modeling the behavior of shear critical columns under seismic 

loads, the developed model is applicable to all RC columns.  
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1. INTRODUCTION 

 

There is a large inventory of reinforced concrete buildings in US and other parts of the world that are not designed 

according to modern seismic design provisions. These buildings are often characterized by low lateral displacement 

capacity and rapid degradation of shear strength and hence are vulnerable to severe damage or even collapse during 

strong ground motions. The need to assess their vulnerability to earthquake damage and hence suggesting the 

desired level of retrofit requires evaluation of the expected behavior in terms of strength and deformation capacity.     

Reconnaissance of damage observed during the past earthquakes suggests that poorly designed reinforced concrete 

columns are the most critical elements to sustain damage leading to a potential building collapse (Sezen et al. 2003). 

Typically, these columns have insufficient and widely spaced transverse reinforcement and lack essential seismic 

reinforcement details resulting in non ductile behavior. The research reported here is aimed at developing a model 

that can predict monotonic and cyclic response of a lightly reinforced concrete column subjected to lateral loading.  

 

A typical fixed-ended reinforced concrete column, when subjected to earthquake loading, undergoes lateral 

deformation which is comprised of three components; flexural deformations, reinforcement slip deformations and 
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shear deformations (Fig 1a). Each of these deformation components are modeled separately and then combined 

under a set of rules to obtain total monotonic and cyclic lateral response. Component deformation models and total 

response model under monotonically increasing lateral load serve as response envelope or primary curve for 

respective component and cyclic responses. The proposed model is tested against the experimental data reported by 

various researchers and is found to perform well with sufficient accuracy. Although, the research is focused on 

modeling lightly reinforced concrete columns that experience flexural yielding followed by the shear failure, the 

model is applicable to the columns failing in shear such as very short columns or well reinforced columns that 

develop plastic hinges and eventually fail in flexure.  

 

 

2. DEVELOPMENT OF MONOTONIC LATERAL RESPONSE ENVELOPE 

 

 

2.1. Flexural Deformations 

 

Flexural response of reinforced concrete elements can accurately be determined by performing section analysis on a 

fiber model considering the actual constitutive material properties in one dimensional stress field. In this study, the 

constitutive laws for concrete in compression are defined considering the effects of confinement on concrete core as 

per the confinement model by Mander et al. (1988). However, in order to represent the expected post-peak concrete 

behavior in shear critical columns, the descending branch is modeled by the relation developed by Roy and Sozen 

(1964). The reinforcing steel behavior is modeled considering a linear elastic behavior, a yield plateau, and a non-

linear strain-hardening region. To be as realistic as possible and to capture non-linearity in actual curvature 

distribution, flexural deformations are calculated by integrating curvatures up to the yield point and by a plastic 

hinge model after the yielding as per Eqn 2.1.1 and 2.1.2 respectively.  
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where f,y is the flexural displacement at yield, (x) is the section curvature at distance x measured along column 

axis, L is the height of the column,  is the curvature at the column end, y is the curvature at yield, and a is the 

shear span. The plastic hinge length, Lp, is taken as one half of the total section depth per the recommendations of 

Moehle (1992). Complete details of the flexural deformation model, including the material constitutive laws and 

moment-curvature analysis, can be found in Setzler (2005) and Chowdhury (2007). 

 

 

2.2. Reinforcement Slip Deformation 

 

The flexural deformations as determined through conventional fiber section analysis do not account for the rotations 

that are caused by reinforcement slip. This results in lateral displacement that can be as large as 25 to 40% of the 

total lateral deformations (Sezen, 2002). Therefore, slip deformations must be accounted for separately and added to 

the other deformation components (flexure and shear) to accurately model total drift of a column. Lateral 

displacements due to reinforcement slip are calculated in this study through a model which was originally 

developed by Sezen and Moehle (2003) and further developed by Sezen and Setzler (2008). The model, as shown in 

Fig 2a, approximates the bond stress as bi-uniform function with different values for elastic and inelastic steel 

behavior, which allows for the efficient computation of the reinforcement slip and eliminates the need for the nested 



 3 

iteration loops that are required in some of the existing bond stress-slip models. The value for the bond stress in the 

elastic range is taken as cb fu 1  (MPa) based on a study by Sezen (2002) on 12 test columns. For the inelastic 

range, the value for bond stress is adopted from the study by Lehman and Moehle (2000) as cb fu  5.0  (MPa) 

where cf   is concrete compressive strength. Slip at the loaded end of the reinforcing bar can be calculated by 

integrating bi-linear strain distribution over the development length as follows: 
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 correspond to the development lengths for elastic and inelastic portions 

of the bar, respectively.  fs is stress at loaded end of the bar, fy and db are yield stress and diameter of the bar, 

respectively. The reinforcement slip is assumed to occur in tension bars only and cause the rotation about the 

neutral axis. Hence, slip rotation can be calculated from the following equation: 
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where d and c are the distances from the extreme compression fiber to the centroid of the tension steel and the 

neutral axis, respectively. The lateral displacement at the free end of a cantilever column can be calculated as the 

product of this slip rotation and length of the column.   

 

 

2.3. Shear Deformations 

 

The basis of the shear model used in this research is the model developed by Patwardhan (2005), which uses 

Modified Compression Field Theory, MCFT (Vecchio and Collins, 1986). Patwardhan (2005) proposed a piecewise 

linear model defining key points in the lateral force-shear deformation envelope through a parametric study 

implementing MCFT through a computer program Response-2000. In this study, pre-peak non linear shear force-

shear deformation response is obtained indirectly from Response-2000 by integrating shear strain distribution over 

the height of the column for each load step as following: 
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where  is the average shear strain over the cross-section at each location x along the height, L of the column, and v 

is the shear displacement. After the peak strength has reached, the shear strength is assumed to remain constant at 

its peak value until the onset of shear strength degradation. By modifying the equation proposed by Gerin and 

Adebar (2004), the shear displacement at the onset of shear degradation, v,u, can be calculated as: 
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Where, vn is the shear stress at peak strength, cf   is the concrete compressive strength, and v,n is the shear 

displacement at maximum strength determined from Response-2000. The peak strength, Vpeak  is the minimum of the 

shear strength of the column, Vn, and shear force corresponding to the maximum moment sustainable by the section, 

Vp. After the shear degradation is initiated, shear strength decreases linearly with increasing shear deformations to 

the point of axial load failure, where lateral strength is assumed to be zero, as shown in Fig 2b. The displacement at 

axial load failure, v,f, is calculated as: 
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where ALF is the total displacement at axial load failure, and f,f and s,f are the flexural and slip displacements, 

respectively, at the point of axial load failure.  The drift at axial load failure is determined by the expression 

proposed by Elwood and Moehle (2005a), which is based on a shear friction model and an idealized shear failure 

plane as: 
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where  is the angle of the shear crack, P is the axial load, Asv is the area of transverse steel with yield strength fyv at 

spacing s, and dc is the depth of the core concrete, measured to the centerlines of the transverse reinforcement. In 

the derivation,   is assumed to be 65 degrees. 

 

 

2.4. Total Monotonic Lateral Response 

 

The proposed procedure models each of flexure, slip and shear deformation by a spring subjected to the same force 

and the total response is the sum of the responses of each spring (Fig 1b). Each of the deformation components can 

simply be added to obtain the total response up to the peak strength of the column. However, for post-peak 

behavior, the column is classified into one of the five categories based on a comparison of its shear, yield and 

flexural strengths and rules are specified for the combination of the deformation components for each category 

(Setzler and Sezen, 2008). Yield strength, Vy is defined as the lateral load corresponding to the first yielding of the 

tension bars in the column, flexural strength, Vp  is the lateral load corresponding to the peak moment sustainable by 

the column during flexural analysis. The shear strength of the column, Vn is calculated by the expression developed 

by Sezen and Moehle (2004) for lightly reinforced concrete columns as: 
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where Vc is the concrete contribution to shear strength, Vs is the steel contribution to shear strength. Asv is the area of 

transverse steel at spacing s, k is a factor related to the displacement ductility , which is the ratio of the maximum 

displacement to the yield displacement. 

 

Classification of the column based on comparison of shear, yield and flexural strength determines expected column 

behavior. The peak response is limited by the lesser of the shear strength (Vn) and the flexural strength (Vp), 

however post peak response is assumed to be governed by the limiting mechanism (i.e., flexure or shear). Category 
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I column (Vn < Vy ) fails in shear while the flexural behavior remains elastic. Category II column (V y≤ V n< 0.95Vp) 

also fails in shear, however inelastic flexural deformation occurring prior to shear failure affects the post-peak 

behavior. Shear deformations continue to increase after the peak shear strength is reached, but the flexure and shear 

springs are locked at their peak strength values. In Category III column (0.95Vp ≤ V n  ≤ 1.05 Vp), the shear and 

flexural strengths are nearly identical. It is not possible to predict conclusively which mechanism will govern the 

peak response. Shear and flexural failure are assumed to occur “simultaneously,” and both mechanisms contribute 

to the post-peak behavior. Category IV column (1.05 Vp < V n  ≤ 1.4Vp) may potentially fail in the flexure, however 

inelastic shear deformations affect the post-peak behavior and shear failure may occur as the displacements 

increase. The shear strength in Category V column (V n  > 1.4Vp ) is much greater than the flexural strength and 

column fails in flexure while shear behavior remains elastic.  

 

 

2.5. Shear Failure at High Displacement Ductility 

 
Shear strength degrades as the displacement ductility increases (Sezen and Moehle, 2004), which can cause shear 

failure in the columns that are initially dominated by flexure. To capture such behavior, as encountered in category-

IV columns, shear failure surface defined by the empirical drift capacity model by Elwood and Moehle (2005b) is 

imposed on the lateral load-total displacement behavior as per following equation: 
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where SF is the drift at shear failure, v is the transverse reinforcement ratio, and v is the nominal shear stress. cf   

and v have units of psi. If the total lateral response envelope exceeds the calculated drift at shear failure, shear 

failure is assumed to have occurred (Elwood 2004), and the model is modified to degrade linearly from the point of 

shear failure to strength of zero at the drift at axial load failure.  

 

 

3. CYCLIC RESPONSE MODEL 

 

Lightly reinforced concrete columns exhibit characteristic behavior under cyclic lateral loading associated with 

stiffness deterioration, strength decay, pinching, and axial load effects. A realistic hysteretic model must be able to 

simulate these characteristic features in order to successfully predict the lateral deformation response of such 

columns. As was done for monotonic response, cyclic response for each deformation component is predicted using 

a set of hysteretic rules and then combined to obtain total cyclic response. Each component and total monotonic 

response serves as an envelope or primary curve for the corresponding cyclic response component. The proposed 

cyclic response models are based on existing hysteretic models that are either simplified for computational 

efficiency or modified to better present the actual behavior of the columns considered in this study. 

 

3.1. Component Hysteretic Models 
 

In order to accurately analyze the hysteretic flexural response a shear critical column, strength decay features must 

be incorporated into hysteretic model alongwith stiffness degradation considerations. The proposed hysteretic 

model for flexural response is based on a modified model by Takeda et al. (1970), which provides realistic lateral 

behavior of reinforced concrete column with a limited computational effort and incorporates degradation of stiffness 

during reloading and unloading of hysteretic force-deformation behavior. In the proposed model, the reloading 

branches of hysteretic loops are aimed at previous maximum response points, thereby simulating stiffness 

degradation. The reloading slope (k3 in Fig 4a) is decreased with increasing maximum response deformation. 
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Unloading slopes (k1 and k2 in Fig 4a) are calculated as a function of the previous maximum deformation. The 

original unloading slope defined by Takeda et al. (1970) is multiplied by a factor of 1.7 to predict realistic cyclic 

flexural response of a lightly reinforced concrete column. Hence, the proposed slope of the unloading branch is 

given by: 
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where kr  is the slope of the unloading branch, ky is the slope of the line connecting the yield point in one direction to 

the cracking point in the other direction, D is the maximum deflection attained in the direction of the loading, and     

Dy is the yield deflection. The strength decay feature is incorporated in the proposed cyclic flexural model by 

enveloping the response through monotonic flexural response which exhibits deterioration of strength after reaching 

the peak strength. For simplicity, the calculated monotonic response envelope is represented by few selected points 

on the envelope and extended linearly beyond the theoretical failure point. This envelope replaces tri-linear primary 

curve used in original Takeda et al. model. 

 

The proposed hysteretic model for reinforcement slip is based on the model by Alsiwat and Saatcioglu (1992) 

which incorporates pinching of hysteresis loops and degradation of stiffness taking place during reloading and 

unloading. The primary curve employed for the hysteretic model by Alsiwat and Saatcioglu is replaced with 

monotonic response envelope based on the bar slip model proposed by Sezen and Setzler (2008).  The slopes of the 

unloading and reloading branches change only at zero force level, hence proposed hysteretic slip model is similar to 

that of hysteretic flexural model shown in Fig 4a. The monotonic slip model envelopes the hysteretic model and 

forces strength decay beyond peak strength at larger deformations. 

 

Unlike flexural response, shear force-shear deformation relationship shows pronounced pinching of hysteresis loops 

due to sliding of two cracked surfaces, developed during previous loadings, and is exhibited by a reduction in load 

resistance during reloading. Shear critical reinforced concrete columns also exhibit prominent deterioration in 

stiffness and strength decay during reversed cyclic loading. The proposed hysteretic shear model is based on the 

model by Ozcebe and Saatcioglu (1989) which successfully integrates strength decay, stiffness deterioration and 

pinching of hysteresis loops in hysteretic shear force-shear deformation relationship in a computationally efficient 

way. The pinching of hysteresis loops is incorporated in the model by defining two separate lines for reloading 

branches, with a change of slope established at the cracking point or Vcr in Fig 4b. The deterioration of the stiffness 

is simulated by aiming at previous maximum response points. The model by Ozcebe and Saatcioglu is modified to 

better simulate stiffness degradation and to capture response of the column with limited displacement ductility or 

with no flexural yielding. In this regard, it is suggested that the reloading branch be targeted at the previous peak 

displacement and load instead of a projected point in the original model. Thus the reloading branch beyond Vcr 

follows a straight line and passes through the maximum displacement point reached previously. Also, in order to 

capture response of the column with significant shear distress properly, the slope of the unloading branch between 

Vcr and zero lateral load (
2k or 2

'
k in Fig 4b) is revised and reduced to: 
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where  is maximum displacement reached during previous cycle before unloading, y is deflection at yield, and 

ky  is slope at yielding.  
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3.2. Combined Hysteretic Model/Total Cyclic Response 
 

The total cyclic response of reinforced concrete column is predicted by coupling the hysteretic flexure, 

reinforcement slip, and shear responses as springs in series. The force in each spring is always same and total 

displacement is sum of the displacements of each spring. Up to the peak strength of the column and during 

unloading and reloading branches, three deformation components are simply added to calculate total lateral 

displacement. After the peak response is obtained, either shear or flexure governs the column behavior. Post-peak 

total hysteretic response is bounded by the total monotonic response based on column failure mode or classification 

category. 

 

 

4. COMPARISON OF MODELS AND TEST DATA 
 

4.1. Monotonic Response Model 
 

In order to verify the proposed model and test its applicability to a wider range of shear and flexural strengths, 

material properties and column geometries, a database of 37 column tests from eight different researchers was 

complied from Pacific Earthquake Engineering Research Center’s Structural Performance Database. Lateral force-

displacement relationships are shown in Fig 3 for five of the 37 test columns (one from each category) modeled in 

this study. Comparisons for the other columns can be found in Setzler (2005). The plots compare the response 

envelopes predicted by the proposed model to cyclic test data for each column. The model predicts reasonable 

response envelopes for the columns examined in the study. For columns in Category IV (Fig 3d) the dashed lines 

show the proposed model before modification for delayed shear failure. The solid line is the final model prediction, 

after consideration of the Elwood shear failure surface. The shear failure surface was used successfully in predicting 

the lateral response of Category IV columns. As discussed previously, Category V columns are those whose shear 

strengths are high enough such that they are not expected to experience shear failure even at large displacements. 

The Elwood shear failure surface and point of axial failure were computed for these columns for comparison 

purposes. However, for category V columns, it is not appropriate to modify the model using the Elwood shear 

failure surface as the proposed model predicts the behavior of these columns well without any shear failure 

modifications.  

 

 

4.2. Cyclic Response Model 
 

Fig 5 shows the comparison of experimental and predicted response of columns tested by Sezen and Moehle (2006). 

Specimen-1 is a Category III column. It should be noted that the range of experimental and predicted displacement 

response is between -90 and +80 mm, however this column was able to carry its axial load at larger lateral 

displacements. The cyclic model had to be stopped at a lower displacement mainly because the experimental 

flexure, bar slip, and shear displacements were not available beyond what is measured. The total experimental 

lateral displacement is measured by a single displacement potentiometer or LVDT attached to the top of the column 

specimen. However, the component experimental hysteretic displacements were obtained from up to 62 different 

displacement potentiometers. Thus, the sum of individual experimental displacements do not necessarily equal to 

the total experimental displacement. As a result of this discrepancy in the experimental data, the maximum 

predicted and experimental lateral displacements are sometimes not close. If the sum of measured component 

displacements matched the total lateral displacement, the predicted hysteretic response would improve greatly. To 

the authors’ knowledge, there is very limited or no experimental column studies reporting individual hysteretic 

flexure, bar slip and shear displacements. Specimen-2 is classified as a Category IV column, failing in flexure with 

limited contributions from shear at failure. Specimen-3 was tested under variable axial load. In the positive loading 
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direction it is a Category IV column, while in the negative direction it is placed in Category III. Specimen-4 is 

identical to Specimen-1, and belongs to Category III. It is evident that reasonable correlation exists between 

analytical and experimental results. The proposed hysteretic model captures the strength decay in columns. 

Although the strength of the columns predicted reasonably, the overall response was not predicted well in many 

cycles mainly because the sum of experimental component displacements used in the model did not match the total 

experimental lateral displacement. Complete details of comparisons alongwith application of proposed hysteretic 

model to other specimen can be found in Chowdhury (2007). 

 

 

5. CONCLUSIONS 

 

An analytical macro model is developed that can simulate non linear monotonic and cyclic response of reinforced 

concrete columns. Although, the research was focused on studying the behavior of shear critical columns, the 

proposed models can accurately predict the lateral force-displacement response of well designed columns as well. 

Deformation components due to flexure, reinforcement slip and shear are first modeled individually for monotonic 

loading and then combined depending upon comparison of their shear and flexural strength. The component and 

total monotonic response models envelop the corresponding cyclic behavior in the development of cyclic response 

models. The proposed monotonic and cyclic response models are tested against a database of test specimens. The 

comparison of monotonic response model with the test data shows reasonable agreement in predicting the 

maximum strength of the columns and their failure mode. The average of the ratio of predicted strength to 

experimental strength was 0.95 with a standard deviation of 0.10. Similarly, for cyclic response models, strength 

decay behavior was reasonably captured by forcing the response to follow the deterioration of strength in monotonic 

envelope after peak strength is achieved. The classification system used appears to identify the failure mode and 

represent the flexural and shear behavior for cyclic response as well. 
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                   (a) Lateral deformation Components                        (b) Spring representation of total response 

 

Figure 1.  Lateral deformation of a reinforced concrete column 

 

 

  

 

 

 

 

                          (a) Proposed slip rotation model                    (b) Proposed shear model 

Figure 2. Proposed models for component deformations  
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Figure 3. Model predictions and test data for the lateral displacement 

            (a) SC3, (b) 25.033W, (c) 2CLD12, (d) 40.048W, (e) U6 
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                  (a) Lateral force-flexural displacement                      (b) Lateral force-shear displacement 

Figure 4:  Hysteretic rules for lateral force-displacement relationship 

 

 

 

 

Figure 5:  Total predicted and measured response of Columns tested by Sezen (2002) 
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