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ABSTRACT: The paper presents an analytical formulation of an element removal algorithm based on dynamic 

equilibrium and the resulting transient change in system kinematics. The algorithm is implemented into an 

open-source finite element code, is numerically validated using a benchmark problem with simple element 

removal criteria, and is able to capture the effect of uncertainty in member capacity. Realistic element removal 

criteria are introduced for mode-dependent gravity load collapse of seismically deficient and retrofitted 

reinforced concrete (RC) columns. An application is presented using a RC 3-bay, 3-story frame previously 
tested on a shaking table. In this application, comparison between the computationally predicted and 

experimentally observed collapse modes is presented giving confidence in the developed analytical formulation. 
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1. I&TRODUCTIO&  
 

Progressive collapse assessment using nonlinear time-history finite element (FE) simulation is gaining popularity 
over traditional methods based on alternate path analysis and redundancy detailing. Review of applications of 

these traditional methods can be found in [1]. There is limited literature on this developing field of research as few 

experimental investigations were conducted on reduced-scale reinforced concrete (RC) frames that are redundant 
enough to experience progressive collapse, with seismically deficient RC columns designed to lose axial load 

capacity, e.g. [2,3]. Experimental data from these studies are intended to establish the behavior of RC systems 

after the loss of one or more columns. However, observed collapse modes are limited and difficult to generalize to 

cases involving disconnection and possible subsequent collision by collapsed elements. 

 

Several analytical approaches were developed for modeling progressive collapse [1]. To capture the progression 

of collapse, one must model the behavior of components under extreme loading and identify the criteria for their 

removal. Two modes of RC column collapse, namely shear-axial and flexure-axial, are presented. Shear-axial 

collapse was investigated in several experimental and analytical studies [3]. The shear friction-based model in [4] 
is utilized to establish limit-states for shear-axial collapse. The damage indices in [1] for fiber-discretized 

cross-sections are used for flexure-axial collapse. For non-ductile and retrofitted –using fiber-reinforced polymers 

(FRP)– columns, new models are adopted from [1] for confined fiber-discretized cross-section and 
confinement-sensitive concrete material, and from [1] for confinement-sensitive bar buckling and lap splices. The 

computational implementation was carried out in OpenSees [5]. Finally, the RC 3-bay, 3-story frame from [3] is 

adopted as an application of the developed computational approach for collapse modeling with element removal. 
 

 

2. DIRECT ELEME&T REMOVAL: MECHA&ICS, IMPLEME&TATIO&, A&D VALIDATIO& 

 

Consider the dynamic equilibrium of the node in Figure 1a. At time t , beams 1B & 2B  and columns 1C & 2C  

are attached to the node. The free-body diagram is shown without externally applied or damping nodal forces. F  

and M  refer respectively to resisting forces (both shear and axial) and bending moments from the attached 
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elements. The node has a lumped translational mass m  and a rotational mass moment of inertia I . Dynamic 

equilibrium is satisfied by the nodal inertia forces xma , yma , and αI , where xa  and ya  are translational 

accelerations in the respective x  and y  directions and α  is rotational acceleration in the yx −  plane. 
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Figure 1 Dynamic equilibrium of a node connected to a collapsed element 

 

At time t , column 1C  reaches its collapse limit-state and is removed from the computational model at time 

ttt ∆+=′  where t∆  is the time step. The resulting free body diagram is shown in Figure 1b, where the nodal 

masses and accelerations are updated to m′ , I ′ , xa′ , ya′ , and α ′ , respectively. Practically, the majority of the 

lumped nodal masses are derived from the floor system, and the updated masses may not be significantly different 

from the original ones. The dynamic equilibrium of the node under resisting and inertia forces is expressed by 

 

∑∑
















′′

′′

′′

−
















′

′

′

+=
















−
















+

αα I

am

am

M

F

F

P

I

ma

ma

M

F

F

P y

x

y

x

exy

x

y

x

ex

vv
 (1) 

 

where exP
v

 is vector of externally applied nodal loads, independent of the element connectivity and not affected 

by the removal of a collapsed element. The summation is for the elements connected at the node. Upon abrupt 

element collapse and removal, this dynamic equilibrium is disturbed by the sudden release of internal forces from 

1C  and must be restored before the solution continues. The resisting forces in the connected elements, F ′& M ′ , 
can only change as a result of updated element deformations, which require changes in relative displacements 

(and possibly velocities) between the elements’ end-nodes. These changes result from updated nodal velocities 

and accelerations and do not take place instantaneously. The inertia forces are directly related to nodal 

accelerations 
xa′ , ya′ , and α ′ , which need to change abruptly to satisfy dynamic equilibrium at time t′ . Since 

the connected elements’ end-nodes other than their shared node are under dynamic equilibrium themselves, this 

abrupt change is first localized at the shared node at time t′ . In subsequent time steps, element removal 

superposes transient loading on the damaged system, whereby the resulting changes in nodal kinetics lead to an 
updated set of resisting (and inertia) forces propagating outward through the connected elements into neighboring 

nodes. These updated nodal forces must satisfy dynamic equilibrium of their respective degrees of freedom 

(DOFs) during every time step resulting in updated inertia forces and nodal accelerations. This process continues 
to propagate in the damaged system until updated nodal configurations for a new equilibrium state are reached. 

 

Upon reaching the new equilibrium state, the nodal velocities of the damaged system result in displacement 

overshooting, amplifying deformation demand in the structural elements. In the hypothetical absence of external 

excitation, free vibration of the system ensues. An initial transient phase is followed by a steady-state phase 

oscillating about the new equilibrium state. The new deformation demands may lead to collapse of other elements, 
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which would be ‘safe’ in the new equilibrium state using quasi-static analysis. If so, a second transient phase is 

excited, and this process continues until the system either (a) reaches an equilibrium state about which it can 

safely oscillate and collapse progression is arrested; (b) undergoes overall gravity load collapse; or (c) undergoes 

partial collapse which is nevertheless compartmentalized while the rest of it survives. In case (c), the structure will 

probably need to be ultimately demolished, yet prospect of maintaining life safety is enhanced compared to case 
(b). In the presence of an earthquake excitation, the input ground motion is treated as equivalent external loads. 

The input time step may be larger than adequate for transient effects, particularly if reaching a new equilibrium 

state requires local axial vibrations in stiff structural elements with significantly short natural periods. Hence, 
shorter time steps are needed immediately after element removal, during which the input ground motion is 

interpolated. An adaptive time stepping scheme can be used for computational efficiency [1]. 

 

An algorithm is designed and implemented for automated removal of collapsed elements during an ongoing 

simulation, Figure 2. The implementation is carried out as a new OpenSees module, designed so that it is called by 

the main analysis module after each converged load step, and ordered to check each element for possible violation 

of its removal criteria. A violation of any criterion triggers the activation of the element removal algorithm before 

returning to the main analysis module. The algorithm is split into two main sets of procedures. The first set is fully 

implemented within the source-code of OpenSees. It includes updating nodal masses, checking if the removal of 
the collapsed element results in leaving behind dangling nodes or floating elements, Figure 3, which must be 

removed, and removing all associated element and nodal forces, imposed displacements, and constraints. The 

second set involves tracking motion of removed element for possible collision. The kinetics of the separated 
end-node(s) at the time of separation are identified from the last converged state of the system, representing the 

initial conditions for free falling or rotating motion of the collapsed element. This motion is tracked as a rigid body 

motion of the element under effects of its own weight, and compared to the position of the damaged system to 

determine if and when collision takes place. At the time of collision, the relative impact velocity is computed and 

used to determine the impact duration and the magnitude and temporal variation of impact force to be superposed 

on the damaged system during subsequent time steps. This second set of procedures is performed in the present 

study by conducting the necessary computations using MATLAB [6], and inputting the results to OpenSees. 
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Figure 2 Automatic element removal algorithm 

 

After completing both sets of procedures, the algorithm updates the system state to the new masses, geometry and 

impact forces. The assumption of Rayleigh viscous damping (mass and/or stiffness proportional) is implicitly 

affected. Since numerical convergence may face difficulties following extreme events, especially in softening 

structural systems, the solution parameters may need to be updated. This is conducted by iteratively switching 

solver type, convergence criteria, and other analysis options, e.g. time step, so that an ultimate failure to converge 

would likely take place only if the damaged structural system experiences global instability. An OpenSees input 

script for adaptive time stepping and solver modification is developed and used in the examples presented herein. 
The above algorithm implementation is numerically validated using a benchmark problem representing an 

idealized structural system consisting of two trussed cantilever beam canopies, Figure 4, with properties (elastic 

modulus, E , cross-sectional area, A , and moment of inertia, I ) in Table 1. The truss members are linear elastic 

up to axial load yF , then become either brittle or perfectly plastic up to a ductility limit, Table 2, before removal. 

Four cases are used to explore sensitivity of the algorithm to uncertainty in element capacities. The beam elements 
are linear elastic. Nonlinear geometry and large deformation effects are included in the FE model by co-rotational 

geometric transformation [5]. Masses are lumped as 10 ton at node 1, 6 ton at node 8, and 4 ton at nodes 6, 7, and 
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9-11. Gravity loads are applied followed by excitation at nodes 2-5 and 12 in the vertical direction using the 

earthquake record from Northridge 1994, Tarzana, 90
°
 component, with scaled peak ground acceleration of 1.04g. 

A time step of 0.005 sec is chosen with no viscous damping. Collapsed truss elements separate from the structural 

system at the connection with the beams. Hence, collapsed element 3 falls and collides with the lower canopy at 

node 9. After collision, element 3 deforms in flexure as simply supported at nodes 4 and 9. The energy of the 
impact dissipates during one half-cycle of flexural deformation before rapidly decaying, e.g. due to friction, and 

element 3 remains supported by nodes 4 and 9 until collapse of the lower canopy. Collision with (or loss of) a truss 

element at any node results in updating this node’s mass and gravity load by adding (or subtracting) 2 tons. 
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Figure 3 Elements, nodes, and loads requiring 

removal due to element removal 

Figure 4 Geometry (in meters) and FE model of 

benchmark problem 

 

Table 1 Element properties of benchmark problem 

Element EA  [kN] EI  [kNm2] yF  [kN] 

1 2,000 3,000 100 

2 100,000 5,000 ∞ (Elastic) 

3 1,000 1,000 50 

4-9 100,000 10,000 ∞ (Elastic) 

10,11 3,000 5,000 150 

 

Table 2 Ultimate truss element ductility limits for benchmark problem 

Truss element Case 1 Case 2 Case 3 Case 4 
1, 11 5 5 5 5 

3 5 5 1 1 

10 5 1 5 1 

 

All simulations were successfully conducted without exhibiting numerical convergence problems. Cases 1 and 2 
result in similar responses where no element collapse takes place. In both cases, the upper canopy elements 1 and 

3 exhibit brief yielding, inducing a ductility demand of 1.17 and 1.11, respectively. Cases 3 and 4 result in 

collapse of element 3 onto the lower canopy at 8.875 sec. As a result, the ductility demand on element 1 increases 
to 2.1 and the upper canopy exhibits no further collapse. The collapse of element 3 results in larger permanent 

displacement in the vertical direction at node 1, Figure 5a where nodal displacements are normalized using 

respective values caused by the gravity load. In the lower canopy, element 3 collides with node 9 at 11.26 sec, and 

the resulting demand causes yielding in elements 10 and 11. In Case 3, the ductility capacity in both elements is 

sufficient to prevent the progression of collapse in the system, which reaches a new equilibrium state, Figure 5b. 

In Case 4, brittle element 10 collapses at 12.37 sec. Shortly afterwards, element 11 reaches its ultimate ductility 

limit and collapses at 14.57 sec leading to complete collapse of the lower canopy, Figure 5b. The deformed shapes 

are illustrated in Figure 6. There is clear contrast between the small difference in ductility demands for elements 3 
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and 10 and the large difference in simulated progressive collapse outcome. This highlights the sensitivity of the 

simulation procedure, due to path dependency, to uncertainty in the structural model parameters. Hence, 

simulation-based progressive collapse assessment needs to be conducted within a probabilistic framework [1]. 
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Figure 5 Simulated nodal displacement time-histories for benchmark problem 
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Figure 6 Snapshots of benchmark structural model deformation (no amplification) at Time=14.5 sec 

 

 

3. ELEME&T REMOVAL CRITERIA 

 

Three element removal criteria are defined for two different modes of failure in seismically deficient and 

retrofitted RC beam-columns and for truss members. These criteria are implemented in OpenSees for force-based 

and displacement-based distributed plasticity fiber elements, lumped plasticity beam-column elements with 

fiber-discretized plastic hinges, shear-axial coupled spring elements [4] and truss elements. 

 

A set of material damage indices is developed and calibrated in [1] for fibers presenting reinforcing steel bars, 

lap-spliced bars, and concrete (confined and unconfined). These damage indices are based, respectively, on the 
accumulation of steel plastic strains, the maximum bond-slip displacement, and the ratio of hysteretic energy 

dissipation to compressive fracture energy. These material-level damage indices define the following two 

aggregated cross-section damage indices to reflect respective loss of axial load and bending moment capacities. 
 

( )







−Ι−= ∑

fibers

section-crossfiberfiberconf 11 AADD A
, ( )








−Ι−= ∑

fibers

section-cross

2

fiberfiberfiberconf 11 IhADDM
 (2a,b) 

 

where A  and I  refer to transformed area and moment of inertia, and h  to the distance between the fiber’s 

center and the uncracked section centroid. 10 ≤≤ fiberD  is the material damage index defined for individual 

fibers [ 1]. 
confΙ  is a loss of confinement indicator with 0.0 value if confining medium (e.g. transverse reinforcing 

ties or FRP jacket) fracture is detected and 1.0 otherwise. These damage indices are suitable for use with deficient 

and FRP-retrofitted RC columns. When 1=AD , the associated column cross-section is considered to have lost its 

axial load capacity and the element removal algorithm is invoked. A future extension may explicitly reflect the 

axial load level in the column. An analogous approach can be defined for MD , but is not of interest in this paper. 
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An element removal criterion is developed to correspond to violating limit equations for the drift capacity model 

in [4] where shear-axial coupled springs are connected in series to a beam-column element to construct a 

compound element. When the axial limit curve is reached in a RC column, the corresponding spring is removed. 

Consequently, the connectivity between the associated beam-column element and the structural system is severed 

at one end-node. Similarly, when the shear limit curve is reached in a RC beam, the corresponding spring is 
removed. Hence, a shear-damaged RC column is allowed to maintain its axial load while shedding shear force 

until it reaches the axial load-lateral drift limit-state, while a shear-damaged RC beam is assumed to collapse in a 

brittle manner due to absence of a compressive axial force that may prevent shear failure from rapid propagation. 
 

A simple element removal criterion is developed for violating maximum (positive) or minimum (negative) axial 

deformation values. When the axial deformation in a truss element reaches either threshold value defined by the 

analyst, the element is removed. The choice of such values enables modeling both brittle and ductile behavior [1]. 

 

 

4. RC 3-BAY, 3-STORY FRAME APPLICATIO& 

 

The structural system is selected to take advantage of existing data from a shaking table test conducted at UC 
Berkeley. This 2D RC 3-bay, 3-story frame structure was constructed to examine the behavior of a non-ductile 

RC office building typical of the 1960s and 1970s designs in California. The test frame was 1/3-scale of a 

prototype structure, Figure 7a. Two of the columns in the frame had non-ductile details with widely spaced ties, 
and 90° hooks, while the other two columns followed ACI318-2002 requirements [7]. Beam designs were based 

on the weak-column strong-beam mechanism using beams with increased depth. Thus, joint shear stresses were 

effectively decreased. The dimension and reinforcement of each column were identical along all stories and 

those of beams were the same over all floors and spans. Summaries of the geometrical and material properties 

are given in Tables 3 and 4, respectively. Complete details of the frame design and test results are given in [3]. 

 

A corresponding FE model, Figure 7b, is developed and used to perform the collapse analysis. The main objective 
of this analysis is investigating the collapse mode, causes, and sequence. Displacement-based beam-column 

elements for the RC frame and zero length elements of coupled shear-axial limit state material [4] at the bases of 

the two columns to the east in all stories comprised the FE model. In Figure 7b, springs are shown only at the 
foundation level for clarity. Meshing, fiber-discretization, and constitutive modeling are similar to those of 

applications A and B in [1]. Nodes 1-4 are fully restrained and masses and gravity loads are lumped at the nodes. 

Co-rotational geometric transformation is used for all elements. The accuracy of the FE model is verified by 

comparing the first three periods of vibration from the analysis to those from the snap-back tests [3]. From Table 5, 

the maximum difference of 15% is mainly due to differences in real concrete material stiffness and that used in the 

simulation. Mass- and stiffness-proportional viscous damping (ζ=0.05) is assumed for the first and third modes. 
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Figure 7 Shaking table test frame and OpenSees FE model 

 

For the purpose of this application, the ground motion recorded from the frame footings during the first run of 

the shaking table test is used as the reference ground motion in the analysis. This motion was the Chile 
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earthquake record at Valparaiso, 1985, scaled up by a factor 4.06. To induce collapse of columns A1 and B1, 

this scaled up ground motion needed to be scaled further by a factor of 1.43, i.e. total scale of 4.06×1.43=5.8, in 

the third run of the shaking table test [3]. It is to be noted that the shaking table test was performed in three runs 

and the third (collapse level) run took place on the damaged state from the first two runs without any repair. 

Therefore, a higher additional scale factor of 2.0, i.e. total scale of 4.06×2=8.12, is needed in the computational 
study to cause the collapse mechanism of the frame as the initial damage was not incorporated in this analysis. 

 

Table 3 Geometry and details of shaking table test structure [3] 
Structural member Dimensions [mm] Main reinforcement Closed ties or stirrups 

Column 
Ductile 152×152 Eight 10-mm (#3) bars 3.2-mm wire@32mm overall height 

Non-ductile 152×152 Eight 6-mm (#2) bars 3.2-mm wire@100mm overall height 

Beam 152×229 Four 10-mm (#3) bars top & bottom 3.2-mm wire@89mm overall span 

 
Table 4 Material properties of shaking table test structure [3] 

Material 

property 

Concrete 

cf ′ [MPa] 

Concrete 

tf ′ [Mpa] 

Concrete 

cover[mm] 

Steel bars yield stress yf [Mpa] 
averages,E [Mpa]  

10-mm 6-mm 3.2-mm 

Value 25 2.7 17 441 483 655 1.85×10
5
 

 

Table 5 Comparison between analysis and snap-back test results of the shaking table test structure 
Period T1 [sec] T2 [sec] T3 [sec] 

Analysis 0.348 0.113 0.069 

Snap-back test 0.303 0.101 0.069 

Ratio 1.15 1.12 1.00 

. 

The simulated system response eventually exhibits global collapse due to soft first story mechanism after axial 

failure of the two non-ductile columns. In Figure 8, the story drift ratio is the average drift ratios from the four 
pairs of nodes defining story columns. Columns A1 and B1 are subjected to shear failure in the interval 7.5-8.0 

sec yet are still carrying axial loads. At 17.14 sec, shear-damaged column A1 loses its axial load capacity and is 

removed, closely followed by B1 removal, and the first story drift ratio disproportionately increases compared 

to the third story. Subsequently, the first story beams act as a cantilever and bending moment is localized at the 

top of column C1 resulting in beam Y1 collapse due to loss of confinement [1] and shortly followed by the 

second story beam Y2 collapse. Finally, the frame completely collapses after removing the last two columns in 

the first story, i.e. C1 and D1. The time at incipient collapse is the time when unrestrained motion is initiated at 

17.165 sec (removal of B1), and the maximum “meaningful” first story, third story, and overall drift ratios prior 

to this incipient collapse are 0.0472, 0.0120, and 0.0425, respectively. The mode and sequence of collapse are 
given in Table 7. Figure 9 compares the analytical and experimental collapse modes at their inceptions. 
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Figure 8 Drift ratio time histories obtained from the OpenSees FE model 
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Table 6 Comparison of computationally simulated and experimentally observed sequence of collapse  

 Computation Experiment 

Collapse mode Shear-axial Flexural (confinement) loss Shear-axial 

Collapsed FE A1 B1 Y1 Y2 C1 D1 B1 A1 

Time [sec] 17.1400 17.1650 17.6160 17.9732 18.1132 18.3794 Run 1
†
 Run 2

†
 

†
Scale = 4.06 causing shear failure but loss of gravity load capacity took place in run 3 (scale = 5.8) [3] 

 

 

Remove 

Column A1

Column B1 
(a) Test collapse mode [3] (b) Analysis collapse mode 

Figure 9 Comparison of collapse mode 

 

 

7. CO&CLUDI&G REMARKS 

 

An analytical formulation is developed based on the dynamic equilibrium of forces to account for abrupt removal 

of collapsed elements from a structural model. The algorithm simulates the dynamic redistribution of forces in 
addition to a simplified modeling of impact. It is implemented and numerically validated using a benchmark 

problem. Element removal criteria are introduced for mode-dependent axial load collapse in reinforced concrete 

columns and for truss members. An application is presented using a RC 3-bay, 3-story frame with light transverse 
reinforcement. Comparisons between the computationally estimated and experimentally observed from previous 

shaking table tests for the collapse modes and results revealed the validity of the developed computational 

approach of progressive collapse simulation using direct element removal. 
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