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ABSTRACT : 

This work deals with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise 

towers subjected to seismic accelerations. The effectiveness of the vibration control strategy is evaluated by expressing the 

objective function in terms of the reduction factors of the structural displacement and absolute acceleration. The mechanical 

characteristics of the tuned mass damper represent the design variables. Analyses of sensitivities are carried out by varying the 

input and structural parameters in order to assess the efficiency of the TMD strategy.  
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1. INTRODUCTION  
 

The issue of mitigating the response of structures to environmental loads has drawn the interest of many researchers in 

recent years. The concept of structural control is now widely accepted and has been frequently applied in construction. 

Among the numerous passive control methods available, the tuned mass damper (TMD) is one of the simplest and most 

reliable. It is applicable not only in new constructions, but also existing ones. Due to its simplicity and reliability, the 

device is also used to suppress undesirable high vibration levels in machinery. The mechanism involved in mitigating the 

vibration consists in the transfer of the vibration energy to the TMD, which dissipates it by damping.  A widespread 

application of TMDs is found in high-rise buildings in order to reduce the oscillating effect of wind loads. TMDs can 

also serve to protect integrated plants and equipment, such as air conditioning plants or power supply plants, just to 

name two. 

Originally, building regulations considered the protection of human life as the primary objective of the structural design 

of new constructions and retrofit interventions. It soon became obvious that this goal was not sufficient to ensure a 

structure’s functionality in the aftermath of an earthquake. Assuring complete structural efficiency is of great 

importance. Protecting auxiliary systems from damage can also reduce post-calamity reconstruction costs. Recent 

earthquakes have shown that damaged auxiliary systems have an enormously negative economic impact. Over 75% of 

construction costs of high-structures are associated with non-structural components. In fact, localized damage of 

acceleration sensitive non-structural systems affect the functionality of a large portion of the entire structure. The social 

and economic consequences of the loss of structural functionality underline the need for more efficient damage control 

systems. Anti-seismic design should not only guarantee the safety of lives but also reduce damage levels of vital 

auxiliary systems within the structure. 

On the basis of these ideas a new design philosophy has been under development in recent years. This is the 

Performance Based Seismic Design  [SEAOC Vision 2000, 1995], which can be defined as a design to reliably achieve 

targeted performance objectives. For example, in fully operational and operational performance levels required in Vision 

2000 project for occasional earthquakes, expected in moderate seismic areas, preventing or limiting damage to non 

structural components and contents is critically important. At such levels, the structure remains in the elastic range or 

may only show a limited excursion beyond this range.  

A high-performance design can be efficiently obtained by controlling the vibration level through the adoption of an 

enhanced TMD strategy. In order to increase the efficiency of a TMD, it is necessary to define its optimum mechanical 

parameters (tuning frequency, damping ratio and mass ratio). Many researchers have investigated the characteristics of 

tuned mass damper systems and several design formulae have been proposed to optimize parameters at different levels 

of oscillation. The analytical development of an optimal design of a TMD considers several types of procedures and 

different mathematical models for the primary structural system and the associated external load [Rana and Soong, 
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1998]. Abe [1994] derived a formula to estimate the effectiveness of the MTMD subjected to harmonic forces. Takewaki 

[2000] developed a method for the optimal location of viscous dampers, taking into account the response amplification 

related to the ground.   

An interesting work in this field is the unconstrained optimization of single non-linear [Rundinger, 2006] and multiple 

linear [Hoang et al., 2005] tuned mass dampers which use the structural displacement covariance of the protected system 

as an objective function (O.F). The input is modeled by a simple stationary white noise stochastic process. 

A complete stochastic-based optimization is proposed by Marano [2007] in which a reliable optimization criterion is 

developed by adopting a covariance approach. The O.F. and constraints are defined stochastically. The constraint 

imposes a limit to the probability of failure associated to the first threshold crossing of structural displacement over a 

given admissible level. 

This paper focuses on high-rise towers which require fully efficient performance levels under seismic conditions. The 

efficiency of the TMD can be improved if the mechanical characteristics are evaluated by means of the following 

criterion of optimization. The seismic analysis is developed stochastically and ground motion is modeled by a general 

stationary-filtered stochastic process.  The O.F. is expressed either by the ratio of the displacement between the 

protected and unprotected systems or by the absolute acceleration of the top of the tower expressed in stochastic terms 

by the root mean square value. These quantities are directly related to damage levels in structural elements and auxiliary 

systems. A comparison between the two criteria is also evaluated. The Design Vector (DV) collects the TMD frequency 

and damping ratio. Several analyses are carried out in order to assess the sensitivity of the optimum solution under 

varying ground conditions and structural characteristics.  

 
 

 

 

Figure 1 Possible tuned mass dampers location in a tall 

tower 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematization a tube-type column with an 

additional mass at the top free end 

2. THE PROBLEM OF A CONTINUUM TOWER EQUIPPED WITH A LINEAR ELASTIC TMD  

 

A tuned mass damper (TMD) is a mass-dashpot-spring system (secondary system) attached to a main system designed to 

reduce the vibration level induced by environmental actions (figure 1).  
The problem of a tall tower subjected to earthquakes and protected against undesirable vibrations by a TMD is analyzed in this 

paper. An adequate design to cater for acceleration-sensitive non-structural elements requires an adequate estimation of the 

intensity of horizontal accelerations. This is also true for existing structures. It is obvious that for highly flexible structures, the 

first vibration mode is so long that it may not lie within the dominant frequency content of earthquakes and the response may 

be dominated by high vibration modes, especially on stiff soil. Therefore, a system of n+1 degrees of freedom is adopted to 

model a continuum column having height  , an extra mass   positioned at the free top end and equipped with a TMD. The 

column, an annular cross-section with constant thickness   (figure 2), is excited by a mono-directional horizontal base 

acceleration.  The column is modelled as a visco-elastic discrete system, with n  lumped elements having equal 

heights /H H n∆ = , whereas H  represents the total height of the column.  

The mechanical scheme of this lumped mass system equipped with a TMD is represented in figure 3. The mass Ms at the 

top of the structure is connected to the mass mTMD of the TMD with a linear spring which has a kTMD  characteristic and 

a dashpot with a cTMD characteristic. Having introduced the filter equation, the structural response of this combined 

Ms

δ
H
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system is determined by solving the dynamic equilibrium equations (1): 

                                 
( )2

( ) ( ) ( )
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g f g g f g f

t t t x

x x w x xξ ω ω

 + + = −


= + = − +

Mx Cx Kx Mr�� � ��

�� �� �

                            (1) 

In (1) ,M K , C  and r stand for the mass, stiffness and damping matrices, the drag vector of the column plus the TMD 

system. A condensed stiffness matrix has been considered. The dissipation viscous matrix of the column is assumed to be 

a linear combination of mass and stiffness matrices. 

f
x  is the response of the Kanai-Tajimi filter which has a time constant frequency gω  and a damping coefficient gξ . 

w  is the white noise process whose Power Spectral Density (PSD) function is 0S .    

The displacement vector ( )1 2, , ,...
T

TMD
x x x=x  is defined by the system-ground relative displacements, whereas the 

velocity and acceleration vectors are respectively ( )1 2, , ,...
T

TMD
x x x=x� � � �  and ( )1 2, , ,...

T

TMD
x x x=x�� �� �� �� . Finally, 

( )1,1,1...
T

=r is the drag vector.  

By introducing the state space vector:  

                                  ( , , , , , )T

TMD f TMD fx x x x=z x x� �                                                  (2)                                                            

system (1) can be replaced by the equation: 

                            ( ) ( ) * ( )gt t x t= +Ζ AΖ r� ��                                                            (3) 

in which A is the state matrix and ( )* 0,0,0.. 1,11..
T

=r . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Discretization of a column into system of lumped masses 
 

The space state covariance matrix 
T

=E  
 ZZQ ΖΖ  is obtained by solving the Lyapunov equation stated as a stationary case: 

                          0+ + =T
ΖΖ ΖΖ

AQ Q A B                                                 (4) 

The input matrix B has all elements equal to zero, except 66 02B Sπ= . 

By introducing the vector ( ), 1, 2, 3, ...
T

TMD
y y y y=y�� �� �� �� �� , which collects the absolute accelerations, the relative covariance matrix 

is: 

                         
T

y
=

XX
Q DQ D�� �                      (5) 

in which: 

                           
1 1− − = − − D M K M C                        (6) 

and 
T

E XX =  XX
Q �

� . 

δ

Ms

∆ H = H/n
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3. OPTIMUM DESIGN CRITERION OF TMD   
 
In order to enhance the effectiveness of the vibration control strategy, TMD frequency and damping ratios should be carefully 

selected.  

In dealing with random vibrations, the problem of optimization can be defined as the identification of a suitable set of 

variables. These variables are the parameters of the design structural configuration and are gathered from the Design Vector

(DV) b over an admissible domain Ω . The optimum DV must be able to minimize a given objective function O.F. and satisfy 

several conditions of constraint in terms of reliability. Both the reliability constraints and the O.F. are defined over a given 

time interval, as the problem deals with a dynamic structural response. 

The general optimization problem defined in such terms was first treated by Nigam (1972) and transformed into a standard 

non-linear approach stated as follows:  

find a design vector ∈b Ω      

which minimizes  . .( )O F b                        (7)  

subject to  ( , ) 1i i

f fP t P i to k≤ =b �                       

The O.F. may be defined either in a standard deterministic or stochastic manner. In the latter case, response statistics can be 

used, such as the covariance or spectral moments of variables (displacement, acceleration or structural stress involving 

important structural elements).  

( , )i

fP tb  is the probability of failure associated to the i
th 

 failure mode, k being the total failure mode number and 
i

fP�  its 

admissible value.  

In this study, the optimal design of a TMD concerns the unconstrained optimization of the two-dimensional design vector 

( ),
T

TMD TMD
ω ξ=b , in which /TMD TMD TMDk mω =  and / 2TMD TMD TMD TMDc m kξ =  . 

The mass ratio /
TMD TMD T

m Mγ =    is assumed to be a given quantity (MT  is the total mass of the system). The process of 

optimization lies in minimizing the response of the protected structure as compared to the un-protected one. Two different 

criteria are adopted with two different O.F.s.  

The first criterion regards the minimization of the absolute acceleration response in which the O.F.acc (subscript acc  denotes 

the criterion based on acceleration)  is defined as a dimensionless ratio between 
1Y

σ �� and 
1

0

Y
σ �� , which are respectively the 

absolute acceleration at the top of both the protected and unprotected structures. 

The objective function is a direct index of the performance of the TMD, whereby detrimental vibrations that can cause 

damages in acceleration sensitive auxiliary systems are reduced.  

Therefore, the following optimization problem regarding the TMD is formulated: 

find ( ),TMD TMDω ξ= ∈b Ω                                                (8) 

  

which minimizes  1

1

0

( )
. .

Y

acc

Y

O F
σ

σ
=

b��

��
                                 

                 (9) 

The second optimization criterion concerns the minimization of the displacement response in which the O.F.dis  (subscript dis

denotes the criterion based on displacement) is defined as a dimensionless ratio between 
1X

σ and 
1

0

X
σ , which are  

respectively the RMS of the relative displacement 1 1 2x x x= −  at the top of both the protected and unprotected structures. 

The second optimization problem of the TMD is formulated as: 

find ( ),TMD TMDω ξ= ∈b Ω                                               (10) 

   

which minimizes  1

1

0

( )
. .

X

dis

X

O F
σ

σ
=

b

                       (11)
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4. NUMERICAL EXAMPLE 
 

A 35 m-high reinforced concrete tower is taken into consideration. The tower has a constant tube-type cross-section with an 

internal diameter of 175 cm and a wall thickness of 25 cm. This continuous system is divided into 40 finite elements. The 

concentrated mass Ms  is assumed to be equal to 140.000 kg. The mass density and the Young modulus adopted are 

respectively
3 32.5 10 /x kg mρ =  and 

2300.000 /E Kg cm= . The first natural period is T1=1.26 sec. The tower is 

equipped with a single TMD whose mechanical characteristics have to be optimized in order to maximize the performance by 

reducing the vibration level and the structural and non- structural damage. 

  
Table I  Ground parameters. 

Filter parameters Stiff Soil Soft soil 

f
ω  20 rad/sec 4.50 rad/sec 

f
ξ  0.65 0.10 

 

The optimum solution to the problem corresponds to the global minimum of the O.F. in the design vector space. More 

precisely, the dimensionless design variable 1/
TMD

ωρ ω ω= , in which 1ω  is equal to 4.98 rad/sec, and 
TMD

ξ  are 

represented. Their optimum values are denoted as 1/
TMD

opt opt
ωρ ω ω=  and 

opt

TMD
ξ . 

A parametric sensitivity analysis in terms of the O.F. and design variables has been performed to verify the variability of 

the optimum solution and assess differences between the displacement and acceleration optimization criteria.  

The procedure includes both stiff (figure 5) and soft soil (figure 6) conditions. The mass ratio is assumed to vary from 

0.01 to 0.3. A number of practical and economic factors which influence the choice of this parameter must be evaluated. 

Usually, the additional mass doesn’t exceed the 1-2% of the first modal mass.In real civil applications, additional masses 

specifically used as TMDs can reach a weight of up to 400 t and are often made of steel or concrete allocated in a 

dedicated location within the main structure (Kwok and Samali, 1995). Sometimes, masses serving other functions, such 

as water tanks, are also used as TMDs. A typical example of this is found in the 305 m-tall Sidney Tower. It is reasonable 

to assume that auxiliary system masses located on adequate supports can be used as TMDs. Their masses can be 

potentially greater than those currently adopted. In this paper the mass ratio 
TMD

γ  may reach a range varying from 1% 

to 16%. 

Figures 5 and 6 demonstrate that the performance of a TMD improves when the mass ratio increases. In figure 5 (stiff 

soil), it can be noted that the displacement based optimization criterion offers a better performance compared to that of 

acceleration. As far as optimized design variables are concerned, tuned damping attains the same values with both 

criteria, whereas the optimal tuned frequency ratio 1/
TMD

opt opt
ωρ ω ω=  falls when the displacement criterion is applied. 

The difference increases as the mass ratio increases, giving proof of the growing efficiency of the TMD strategy. The 

optimal tuned frequency value tends to decrease faster in the acceleration based criterion compared to the acceleration 

criterion. 

Figure 6 refers to soft soil condition. In this case, the acceleration based criterion offers a better performance compared 

to that of displacement. With regards the optimum design variables, some differences arise in the tuned mass damping 

ratio. 
TMD

optξ  increases when applying the acceleration based criterion, whereas 
opt
ωρ  falls in case of the displacement 

based criterion.  

In order to evaluate the different performances between the two criteria under stiff and soft soil conditions, the optimal 

solution is plotted in figures 7 and 8 by varying the frequency content of the seismic acceleration. The ground frequency 

is on the x-axis. The ground filter damping ratio from 0.65 for 20 / sec
g

radω =  to 0.1 for 4 / sec
g

radω =  is 

assumed to be a linear variation. The mass ratio is assumed to be equal to 0.02
TMD

γ = . Two fundamental frequencies 

are considered, respectively 1 4.98( / sec)radω =  (fig. 7) and  1 10.58( / sec)radω =  (fig. 8).  

A maximum performance can be noted in figure 7, which corresponds to the minimum value of the optimized objective 
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function. This occurs when the analysed structure is in resonance with the frequency content of the seismic excitation 

( 5 / sec
g

radω ≅ ). With a fundamental frequency of 1 4.98( / sec)radω =  and in absence of a TMD, a maximum 

amplification of the response occurs in resonance with the frequency content of the ground motion.  

 

 
Figure 4   O.F. surface in the dimensionless design vector space 1/

TMDωρ ω ω=  and 
TMD

ξ . Stiff soil is considered. 

1 4.98( / sec)radω =  and 0.02
S

ξ = . The mass ratio is assumed 0.01
TMD

γ = . 
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Figure 5 Differences in OF (a) and DV(b-c) optimal solutions 

for displacement and acceleration based criteria, for different 

values of tuned mass ratio. A stiff soil is considered.  
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Figure 6 Differences in O.F. and DV optimal solutions for 

displacement and acceleration based criteria, for different values of 

tuned mass ratio. Soft soil is considered. 1 4.98( / sec)radω =

and 0.02
S

ξ = . 

In case of soft soil, high modes don’t have a great influence on the response because the ground excitation is 

narrow-banded in its energy content. The application of a TMD offers a good performance in reducing structural 

responses.  Both criteria give quite similar optimum O.F.s. For soil with 5 / sec
g

radω ≅ , the optimum solution 

gives / 1
TMD

opt opt

Sωρ ω ω= ≅ . Also shown by previous researchers, this solution corresponds to tuning the mass damper to 

the fundamental frequency of the structure. The TMD acts only by means of its frequency. This behaviour is 

demonstrated by a low optimum TMD damping ratio. With reference to the two response quantities of interest, 

displacement and absolute acceleration, it can be observed that acceleration on soft soil is better controlled than 

displacement, although efficiency levels remain similar in both cases.   

In figure 8, which corresponds to a more rigid structure, it is possible to note the similarity of efficiency in reducing the 

acceleration on soft soil and the displacement on stiff soil. The TMD works better from medium to stiff soil because of a 

maximum amplification resonance effect with the ground motion. In conditions of resonance and near-resonance of the 

unprotected structure with the ground motion, the optimum performance is obtained by both criteria by means of the 
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same  TMD damping ratio and by tuning the TMD frequency almost to the first natural frequency of the structure. On 

soft soil, the TMD functions in a different way in reducing acceleration and displacement. An acceleration reduction can 

be obtained only by tuning the TMD frequency to the natural frequency of the structure. Any reduction of the 

displacement isn’t subject to such a limitation. 

 

 
Figure 7 Differences in OF and DV optimal solutions for 

displacement and acceleration based criteria, for different of filter 

frequency ratio. 1 4.98( / sec)radω =  and 0.02
S

ξ = . 
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Figure 8  Differences in OF and DV optimal solutions for 

displacement and acceleration based criteria, for different of 

filter frequency ratio. 1 10.58( / sec)radω = and 

0.02
S

ξ = . 

 

In figures 9, 10, 11 and 12, a sensitivity analysis is carried out by varying the mass ratio for different structural periods. 

This variation is obtained by adopting several additional masses Ms. The remaining structural characteristics are the 

same as in the previous examples. Figure 9 corresponds to stiff soil and the displacement based criterion. It can be noted 

that the TMD efficiency in reducing structural displacement depends strongly on the structural period. The best control 

efficiency occurs when the structure is near to  the resonance condition with the ground motion. As explained, this 

happens when 0 0.58secT =  ( 1 10.8 / secradω = ).For a low mass ratio, the optimum response reduction is obtained 

by tuning the mass damper to the first natural frequency; the optimum required level of dissipation remains low. When 

the mass ratio increases, the tendency of the optimum design variables changes and the TMD acts by means of its 

damping characteristic. Significant reduction of the responses to displacement and acceleration can be obtained only by 

adopting a high mass ratio. Figures 11 and 12 correspond to soft soil conditions. With the displacement based criterion, 

the solutions differ both in terms of performance and optimal DV parameters. A low performance solution is related to a 

structure with a natural period of 0.58 sec. An optimized O.F. tends to decrease, increasing the structural performance 

and the main structural period. The DV optimal parameters (i.e. 
opt

ωρ and 
opt

TMD
ξ ) also show dissimilar solutions for 

various system natural periods. The TMD is tuned to the frequency of the main structure only in the case of a structure 

with a higher period. With more rigid structures, it isn’t possible to tune the TMD frequency to the main frequency of the 

structure, thus causing a TMD strategy failure. With this ground configuration, the spectral contents are localised almost 

around the main frequency. This configuration can be considered to be a narrow band if compared to the stiff one. If the 

structural period is closer to the main ground, optimal O.F. and DV solutions are different from those obtained in the 

case of greater or smaller structural periods quite distant from the ground. On the contrary, the results on stiff soil change 

as the structure varies, but remain close to those obtained from soft soil conditions. With the acceleration criterion it isn’t 

possible to obtain a uniform tendency of the optimum solution for both structures. 

 

5. CONCLUSIONS 

This paper presents a full stochastic approach for the optimum design of tuned mass dampers used in tall towers which may be 

subjected to earthquakes. The results obtained show that the optimized TMD can be very effective in reducing the vibration 

level in a primary structure, but its effectiveness depends on the relation between ground motion characteristics and structural 

parameters. The optimized TMD works differently in reducing displacement and acceleration with relation to ground motion 
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frequency content and structural parameters. Results show that acceleration is controlled better than displacement on soft soil, 

whereas an inverse tendency can be noted on stiff soil.  
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Figure 9  O.F.d and DV optimum solutions versus tuned 

mass ratio; stiff soil type condition 
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Figure 10 O.F.a and DV optimum solutions versus tuned mass 

ratio; stiff soil type condition. 
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Figure 11:  O.F.d and DV optimum solutions versus 

tuned mass ratio; soft soil type condition. 
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Figure 12: O.F.a and DV optimum solutions versus tuned mass 

ratio; soft soil type condition. 
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