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ABSTRACT : 

In this paper a design method for buckling-restrained braced steel frames is examined. The proposed method 
aims to obtain an uniform yielding of all Buckling Restrained Braces (BRBs), thus avoiding concentration of 
plastic deformation at some storey level. This is a critical point in the design since BRBs usually have very low
hardening in post-elastic response, especially if they are used in steel frames with pinned joints. An optimal
distribution of column stiffness and of brace stiffness can be preliminarily defined from the free vibration
equations of an equivalent shear-deformable cantilever. This continuum model permits to obtain closed form 
solutions that can be adopted for the design of structures with regular mass distribution over the height. A 
similar procedure is directly applied to discrete models. An optimal solution for the equivalent SDOF system is
achieved by using force-based or displacement based design approaches. Being the proposed method based on
the first vibration mode, dynamic analysis are performed and discussed in order to evaluate the reduction of 
performance in the nonlinear range deriving from higher vibration modes.  
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1. INTRODUCTION  
 
Buckling-restrained braced frames were introduced to enhance the compressive capacity of braces while not 
affecting their stronger tensile capacity, hence producing a symmetric hysteretic response (Uang and Nakashima 
2004). A buckling restrained brace (BRB) usually consists of a core steel brace encased in a steel tube filled 
with concrete or grout. BRBs can constitute the whole diagonal brace of the bracing system or they can be 
placed in series with an over-strengthened brace that remains elastic. BRBs have been used extensively for 
seismic applications in Japan and United States due to their simple and efficient behavior, as testified by several 
applications (Uang and Nakashima 2004, Whittaker and Constantinou 2004), and by the inclusion in code 
recommendations such as the AISC seismic provisions (American Institute of Steel Construction 2005). The 
introduction of BRB members undoubtedly represents a major advancement compared to conventional braces in 
terms of cyclic inelastic deformation capacity and reduction of design forces. However, buckling restrained 
braced frames may undergo large inelastic storey drifts without the ability to distribute the ductility demand 
over the height of multi-storey structures, due to possible localizations of inelastic deformations. This latter 
aspect deserves particular attention due to the bracing system characteristics, i.e., statically determinate 
structural configuration and limited BRB hardening, especially in steel frames with beams connected to columns 
by means of pinned joints as often happens in Europe. As a result, the frame global ductility is strongly 
dependent on the distribution of BRB strength and stiffness at each storey level. 
In this paper a single degree of freedom (SDOF) based design method for steel frames with BRBs is examined. 
The bracing system is modeled as a continuum cantilever beam where BRBs are associated to the shear stiffness 
and columns are associated to the flexural stiffness. This continuum model allows a more clear identification of 
the parameters influencing the structural behavior and a more simple definition of the design procedure as 
compared to discrete models. Closed form solutions can be obtained for cantilever beams with uniformly 
distributed mass, resulting in simple analytical expressions that can be adopted for the design of structures with 
regular mass distribution over the height. An optimal solution for the SDOF system is achieved by using 
force-base or displacement based design approaches (Faifar 1999), similarly to other methods based on the same 
type of approach (Della Corte 2006). However, the actual dynamic nonlinear response can significantly be 
influenced by higher vibration modes and by deformation localization at some floor levels. Thus preliminary 
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results of numerical simulated response analyses are illustrated in order to highlight advantages and limitations 
of the presented design procedure paying particular attention to the differences between static analysis based on 
the first vibration mode and nonlinear dynamic analysis.  
 
 
2. PROPOSED DESIGN METHOD 
 
2.1. Dynamics of shear-deformable beams 
The bracing system behavior may be described by a continuous model consisting in a cantilever beam including 
flexural and shear deformability. The balance equations and relevant boundary conditions of this continuous 
model are (Humar 2002): 
 
  ( )[ ] quAu =ψ+−μ ''&&                       ( ) 0' =ψ+ LuA       00 =u   (2.1) 

 ( ) ( ) 0''' =ψ++ψ−ψμ uAJI &&                    0' =ψ LJ         00 =ψ  (2.2) 
 
where the functions ( ) ( ) [ ] [ ) ℜ∞×ζψζ a,0,0:;,; Lttu  are the cross section transverse displacements and 
rotations respectively, L is the total height, ( )tq ;ζ  is the time dependent load distribution, ( )ζA  and ( )ζJ  are 
the distribution of flexural and shear stiffness respectively, ( )ζμ  is the mass per unit length, ( )ζμI  is the 
rotation inertia, primes denote differentiation with respect to ζ  and superposed dots denote differentiation with 
respect to time t. The strain field is described by the shear deformation ψ+=γ 'u  and by the curvature 'ψ=θ . 
The solution is defined once the initial conditions are assigned. In the sequel the rotation inertia is neglected. 
The proposed design method aims at finding a stiffness distribution giving uniform shear deformation γ  and 
uniform curvature θ  along the cantilever in the first vibration mode. The shear deformation is related to the 
deformation of the diagonal braces while the curvature is related to the deformation of the columns. Thus the 
uniform strain condition leads to simultaneous diagonal braces yielding if the response is dominated by the first 
vibration mode and an adequate over-strength is guaranteed for the columns. Starting from the assumed uniform 
strain field, it is possible to evaluate the functions ( )ζv  and ( )ζϕ  describing the transverse displacement and 
rotation of the beam in the first vibration mode of circular frequency ω , by using the beam compatibility 
equations and the relevant kinematic boundary conditions: 
 
 γ=ϕ+'v        00 =iv  (2.3) 

 θ=ϕ'           00 =ϕi  (2.4) 
 
The displacement and rotation functions describing the first vibration mode are obtained by integration: 
 

 2

2
1

ζθ−ζγ=v  (2.5) 

 ζθ=ϕ  (2.6) 
 
From the modal shape it is possible to compute the coefficient *m  (i.e., the mass of the equivalent SDOF 
system) and the modal participation factor Γ , for displacement v  normalized with respect to the top end 
value: 
 

 ( ) ( ) ζζζμ= ∫ dv
v

m
L

L
0

* 1             
( ) ( ) ζζζμ
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    (2.7, 2.8) 
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Thus the stiffness distributions ( )ζA  and ( )ζJ  are determined from the differential balance equations of the 

first vibration mode (inverse problem) deduced substituting Eqns. 2.3-2.4 and the relations titi eveu ωω ϕ=ψ= ,  
in Eqns. 2.1-2.2: 
 
 0'2 =γ−μω− Av          0=LA  (2.9)  

 0' =γ+θ− AJ              0=LJ  (2.10) 
 
The solution of this homogeneous differential system is defined except for a scale factor assumed to be the shear 
stiffness of the base section ( )00 AA = . The problem is solved taking as unknowns the functions ( ) ( ) 0/ AAa ζ=ζ  
and ( ) ( ) 0/ AJj ζ=ζ . The function a is evaluated by integrating Eqn. 2.9; afterward the function j is obtained from 
(2.10). In the case of uniform mass distribution the following analytical expressions are obtained: 
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where a dimensionless parameter γθ=β L  is introduced. Trends of shear and flexural stiffness distributions 
along the cantilever length are depicted in Figure 1, for different values of β spanning from 0.5 (small rotational 
deformation with respect to shear deformation) to 1.5 (large rotational deformation with respect to shear 
deformation). 
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Figure 1 Trends of shear and flexural stiffness distributions along the cantilever. 

 
It should be noted that, differently from the flexural stiffness distribution, the shear stiffness distribution does 
not strongly depends on parameter β. The circular frequency (ω) is defined except for a scale factor and can be 
given as a function of the circular frequency )1(ω  corresponding to a unitary base shear stiffness ( 10 =A ). 
From the above analytical expressions of displacements and stiffness, the parameter )1(ω can be derived: 
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2.2. Base shear stiffness design 
It is assumed that: (i) the cantilever has a linear elastic – perfect plastic shear behavior; (ii) the yield shear 

γ= AVy  is attained for the shear deformation γ ; (iii) the ultimate shear strain is given by γμ=γ du  where 

dμ  is the shear design ductility. The bracing system ductility relevant to the first vibration mode ( sμ ) can be 
deduced by subdividing the displacement of the cantilever top end (point of control) in the flexural contribution 

2/2Lv Lc θ−=  and in the shear contribution Lv Ld γ=  (Eqn. 2.5) and can be put in the form: 
 

 
LdLc

LddLc
s vv

vv
+

μ+
=μ  (2.14) 

 
The base shear stiffness 0A  is designed comparing the capacity of the bracing system to the seismic demand. 
The capacity (C) may be given by the maximum acceleration achievable in the equivalent simple oscillator and 
it is directly proportional to the base section shear stiffness 0A :   
 

 ( )
Γ

= *
0

0 m
A

AC
γ

  (2.15) 

 
The demand (D) is given by the inelastic design response spectra (Fajfar 1999). In the force-based design 
approach, the inelastic spectrum in term of pseudo acceleration ( )saS μω,  for the simple oscillator with 
ductility sμ  and circular frequency ω  is taken into account and it depends on 0A , since )1(0 ω=ω A : 
 
 ( ) ( )sa ASAD μω ,)1(00 =   (2.16) 
 
Thus 0A  can be deduced by the equality: 
 
 ( ) ( )00 ADAC =  (2.17) 
 
Otherwise, in the deformation-based deign approach, it is possible to evaluate the capacity by means of the 
maximum displacement LvC = (scale factor independent) and the demand from the displacement design 

spectra ( ) ( )sd ASAD μω= ,)1(00  dependent upon 0A  by means of the circular frequency. In this case the two 
approaches are equivalent and give the same results. Alternately to these analytical approaches, the capacity 
spectrum method (Fajfar 1999) may be applied, which consists of comparing, by means of a graphical procedure, 
the capacity of the structure (evaluated by means of a push-over analysis) with the seismic demand (given by 
inelastic demand spectra in the ADRS format). 
 
 
3. APPLICATION TO THE DESIGN OF V-BRACING SYSYEMS 
 
3.1 V-bracing systems with concentrated mass  
The same procedure may be adopted also in the case of bracing systems with masses concentrated at floor levels 
(discrete systems), once the typology of bracing system is chosen. For example, in the case of a V-bracing system 
with base b, inter-storey height h and number of floors p, the modal shape is known once the strains of the diagonal 
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braces ( dε ) and the columns ( cε ) are assigned. The following values of the storey shear deformation sγ and the floor 
curvature sθ may be obtained 
  
 bhLdds /2 2ε=γ   (3.1) 
 bcs /2ε−=θ  (3.2) 
  

where ( )22 2/bhLd += , as shown in Figure 2.  
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Figure 2 V-bracing system: geometry (a); floor shear deformation and floor curvature (b). 

 
The storey displacements div  and civ due to the diagonal brace deformation and to the column deformation 
respectively are given by  
 
 hiv sdi γ=  (3.3) 
 2

1 hivv scici θ−= −   (3.4) 
 
where i = 1… p, whereas the storey rotations are 
 
 hi si θ=ϕ   (3.5) 
 
As previously showed for the continuous case, the normalized shear and flexural stiffness ai and ji may be 
determined, by imposing at each floor the translational and rotational equilibrium equations. The subsequent 
recursive equations are obtained: 
 
 λ+= + /1 iiii vmaa  (3.6) 
 ssiii hajj θγ+= + /1  (3.7) 
 
where ∑=λ

k kkvm  and 1a =1.0 1j =1.0. From Eqns. 23 and 24 the areas dia  of the diagonal braces  and 

the areas cia  of the columns, normalized with respect to the parameter 0A , are obtained: 
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 23 /2 EhbLaa didi =  (3.8) 

 22/ Ebja ici =  (3.9) 
 
The circular frequency )1(ω , the modal participation factor Γ  and the factor *m  are: 
 

 
∑

∑∑ γ+θ
=ω

k kk

k kk k
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)1(   (3.10)   
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 ∑=
k kk

p
vm

v
m 1*  (3.12) 

 
Approximate results may also be obtained by using shear-deformable beam equations illustrated in the previous 
section, by posing bγ=γ , bθ=θ  and Lm

k k∑=μ  (where L = ph). Finally the same procedures shown in 

section 2.2 may be used to evaluate the base shear stiffness A0. 
 
3.2 Numerical example   
In this section the design procedure is applied to a case study consisting of a four-storey steel frame with pinned 
joints and including a V-bracing system as only seismic resistant component. The seismic floor mass estimated 
from vertical live and super-dead loads are 135 kNs2/m at the top floor and 170 kNs2/m at the first three levels 
(corresponding an steel office building with floor dimensions of approximately 20 m x 30 m and two bracing 
systems for each direction). Steel S275 is assumed for diagonal braces (BRB devices) and columns of the 
bracing system. Consequently the assumed design strain of the diagonal braces is 210000/275=σ=ε Eyd = 

0.00131, whereas for the columns a lower value equal to ==ρε=ε 4/00131.0dc 0.0003275 is chosen. The 
constant ρ was assumed equal to 4 in order to guarantee column resistance and to avoid column buckling under 
vertical and seismic loads (by considering an adequate over-strength with respect to the diagonal braces). The 
floor displacements are reported in Table 3.1. In the same table are also reported the values obtained for ia  and 

ij . The following parameters may be calculated: )1(ω = 0.0116, Γ = 1.4 and *m = 365 kNs2/m.  

The elastic spectrum given by the Italian seismic code (OPCM3431 2005) for ground types B,C,E with a peak 
ground acceleration equal to ga = 0.35g is considered. The inelastic design pseudo-acceleration spectrum is 
obtained by reducing the elastic spectrum by a factor μR  according to the following equation (Fajfar 1999): 
 

   ( ) 11 +−μ=μ
c

s T
TR       if    T < Tc  (3.13a) 

   sR μ=μ                  if   T > Tc  (3.13b) 
 
with Tc is defined in OPCM 3431 (2005). A design ductility equal to dμ = 5 is considered for the diagonal brace, 
considered made by a BRB device and an elastic connection brace. Larger values of dμ lead to excessively 
deformable bracing systems. A structural ductility sμ = 3.8 is obtained by applying Eqn. 2.14. By considering 

the force-based approach, a base shear stiffness 0A  equal to kN510256.2 ⋅  is obtained and the values of areas 
for the diagonal braces ( diA ) and columns ( ciA ) are reported in Table 3.1. In the same table the values of 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
stiffness ( diK ) and yielding force ( yiF ) of diagonal braces are also reported.  
 

Table 3.1 Modal shape and design results  
floor vci vdi vi ai ji Adi Aci Kdi Fyi 

  (mm) (mm) (mm) - - (cm2) (cm2) (kN/mm) (kN) 
1 1.7 10.1 11.8 1 28.4 20 24 96.3 552 
2 5.1 20.1 25.2 0.904 82.1 18 71 87.1 499 
3 10.2 30.2 40.4 0.698 151.6 14 130 67.3 386 
4 17.0 40.3 57.2 0.370 228.4 7 196 35.6 204 

 
Both nonlinear static analysis and nonlinear dynamic analysis (time-history) of the designed bracing system 
were performed with the finite element structural analysis program SAP 2000 (advanced version 10.1.1). The 
nonlinear static push-over analysis, carried out by considering a force distribution correspondent to the first 
vibration mode of the system, showed that: (i) all diagonal braces reach yielding and ultimate displacements for 
the same load multiplier; (ii) the displacement of the point of control (last floor) coincides with the analytically 
predicted displacement 

LddLc vv μ+ and (iii) the maximum acceleration that the bracing system can withstand 
is the design acceleration of 0.35g, as shown in Figure 3, where the push over curve (capacity curve) is plotted 
together with the design spectrum (demand curve) in the ADSR plane and their intersection point is the 
performance point of the structure.   
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    Figure 3 Static push-over analysis results 

 
The results obtained by the nonlinear static analysis are compared with those obtained from nonlinear dynamic 
analysis of the system subjected to seven artificial accelerograms compatible with the elastic 
pseudo-acceleration spectrum used in the design procedure. The Bouc-Wen material model with low hardening 
stiffness (post yield stiffness ratio = 0.02) was adopted for the diagonal braces. This comparison is illustrated in 
order to evaluate the influence of higher vibration modes in the seismic response of the structure. Figure 4 
depicts the distributions at each level of the diagonal brace maximum displacements (average values of 
maximum displacements obtained in the seven nonlinear dynamic analyses) for different values of the peak 
ground acceleration, from 0.1g to 0.4375g (which is the design peak ground acceleration given by 0.35gS = 
0.4375g, where S is the soil factor and its value is 1.25 for ground types B,C,E). It is evident form the figure that 
all diagonal braces attain the yield displacement (i.e., ddy Ld ε= = 5.7 mm), but the first and the last floors 

show larger plastic deformations, that exceed the ultimate displacement (i.e., dddu Ld εμ= = 28.5 mm). In the 
analyzed case, diagonal braces should possess a ductility dμ  at least equal to 6.5, which is 1.3 times the value 
assumed for the bracing system design. 
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Figure 4 Distribution of BRB maximum displacements for different values of BRB ductility 

 
4. CONCLUSION 
 
In this paper a design method for steel frames equipped with BRBs is illustrated. The proposed method aims to 
obtain an uniform yielding of all BRBs, thus avoiding concentration of plastic deformation at some storey level. 
This is a critical point in the design since BRBs usually have a very low hardening in post-elastic response. An 
optimal distribution of column stiffness and of brace stiffness and strength is defined from the free vibration 
equations of a shear-deformable cantilever. Closed form solutions, useful in preliminary design, are given. 
Being the proposed method based on the first vibration mode, dynamic analysis results are discussed to evaluate 
the reduction of performance in the nonlinear range deriving from higher vibration modes. A critical situation in 
which beams are pinned to columns is considered to highlight the risk of strain localization. In all numerical 
simulations, BRBs (with ductility spanning from 5 to 15) widely exploited the plastic range and these 
preliminary investigations furnished satisfactory results. 
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