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ABSTRACT: 

In this paper, a procedure to achieve a target performance of multi-degree-of-freedom structures with Maxwell 
model-based brace-damper systems is proposed. A single story structure with a viscous damper installed at the
top of a Chevron-type brace is first used to investigate the effect of brace stiffness on the story displacement. 
Closed-form solutions relating the brace stiffness and damping coefficient to the target displacement reduction 
are derived for this simple structure. For a given brace stiffness, the closed-form solution is minimized to give 
design formulae for the optimal damping coefficient and maximum performance. The model is subsequently 
extended to multistory buildings with viscous dampers installed at the top of Chevron-type braces. The optimal
brace stiffness and damping coefficients are obtained through an iterative process where an index, defined in 
terms of the sum of the mean square of the interstory drift, is minimized. The reduction in response, and hence 
improved performance of the structure, can be achieved by a strategic combination of the brace stiffness and 
viscous damper coefficients, instead of relying on damper coefficients alone as conventionally been done.  

KEYWORDS: Maxwell model, brace stiffness, viscous damper, optimization  

 
1. INTRODUCTION  
 
Passive control devices, such as viscous fluid dampers, visco-elastic dampers, friction dampers, and tuned mass 
dampers, are generally accepted as being effective in mitigating the hazards posed by wind and earthquake 
(Soong and Dargush 1997, Constantinou et al. 1998, Lee et al. 2006). These devices, when properly designed, 
enhance the performance of the structure by modifying their dynamic response characteristics. Although the 
installation of these devices invariably incurs additional cost, their strategic use is cost-effective as the extra
expense is often offset by the need to increase the lateral stiffness and strength of the structure in conventional 
approaches and the need to enhance the ductility capacity of the structure when adapted to seismic environment. 
However, for economic use of these devices, careful selection of damper parameters and their tactical placement 
for maximum efficiency becomes important, and these considerations have been an active area of research in 
recent years (Gluck et al. 1996, Yang et al. 2002, Lavan and Levy 2006, Singh and Moreschi 2001). 
 
FEMA 356 (2000) provides an approximate and easy-to-use design formula to account for the increase in 
structural damping from the addition of supplemental viscous dampers during seismic rehabilitation of 
buildings. More specifically, an effective damping ratio arising from the supplemental linear viscous dampers is
added to the inherent damping ratio of the structure, where the additional damping ratio, assuming first mode 
response, is computed by (FEMA 2000): 
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where jθ  is the angle of inclination of the thj device from the horizontal, jc  is the damping coefficient of the
thj device, rjφ  is the first modal relative displacement between the ends of the thj  device in the horizontal 

direction, T is the first mode period, iφ  is the first modal displacement at thi  floor, iw  is the weight of the
thi  floor. It is evident from Eqn. 1.1 that the effectiveness of the supplemental dampers, as measured by the
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additional damping ratio dξ , depends on the orientation of the dampers. For a given damping coefficient jc , 
contribution to the effective damping ratio by the damper will be proportional to the jθ2cos  term, which means
viscous dampers aligned horizontally, i.e. parallel to the floor, will be more efficient in increasing the effective 
damping. Hence, instead of using a diagonal brace, the Chevron-type brace is generally considered to be more 
beneficial since the viscous dampers can be installed and connected to the next story horizontally. 
 
Although FEMA 356 (2000) permits the use of energy dissipation devices for seismic rehabilitation of 
buildings, it does not provide guidelines for optimal design of these devices. In the literature review conducted 
in this paper, several researchers (Gluck et al. 1996, Yang et al. 2002, Lavan and Levy 2006) provided
procedures for determining the optimal damper parameters and configuration, and most of these procedures are
efficient in arriving at the optimal parameters. For structures with viscous dampers installed at the top of
Chevron-type braces, procedures proposed by Takewaki and Yoshitomi (1998) and Singh et al. (2003) are 
subjected to a constraint on the total equivalent damping ratio. Although their design procedures maximize the 
effect of the added dampers, the influence of brace stiffness was not thoroughly investigated. Singh et al. (2003)
noted that increased brace flexibility tends to reduce the effectiveness of the viscous dampers. It was suggested
that a brace stiffness that is ten times the story stiffness can be considered essentially rigid, and that a brace
stiffness that is five times the story stiffness would be adequate without compromising the damping
effectiveness significantly. Despite such recommendations, it remains unclear how significantly will the brace 
stiffness affect the damper performance as well as the structural response.  
 
Most approaches in the literature ensure an improved performance of the building by increasing the damper 
dissipative capacity, which translates into an increase in the overall damping of the building. The increase in
overall damping of the building is typically assessed in terms of the amount of damping associated with the first 
mode. However, in the context of optimization, improved performance should be examined in terms of response 
reduction via response parameters such as displacement, velocity, acceleration, inter-story drift or base shear 
force. For example, a performance index can be specified in terms of the story displacement, and the target 
reduction in the performance index can thus be regarded as the goal of the optimization. In this paper, a 
gradient-based approach for optimizing the structures with multiple Maxwell models is proposed. For a given
target performance, it is found that there exists an optimal brace stiffness for both single-degree-of-freedom 
(SDOF) and multi-degree-of-freedom (MDOF) structures. 
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Figure 1 Maxwell model - serial arrangement of linear spring and viscous dashpot 
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Figure 2 One-story structure with a viscous damper installed at the top of a Chevron-type brace 

 
2. ANALYTIC MODEL FOR A SDOF STRUCTURE WITH A MAXWELL MODEL 
 
A SDOF structure with a viscous damper installed at the top of a Chevron-type brace is used as the basic model
for the first phase of the study. The serial arrangement of a viscous damper and brace assembly can be
represented by a Maxwell model, as shown in Figure 1, which can be described by the following first order 
differential equation 
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where )(tPd  is the damper force, dc  is the damping coefficient of the viscous damper, bk  is the horizontal
stiffness of the Chevron-type brace, and )(tdΔ  is the sum of the deformation of the spring and dashpot 
elements in the Maxwell model. When the brace and viscous damper assembly, as represented by the Maxwell 
model, is used in conjunction with a SDOF structure, which is shown in Figure 2, the equations of motion of 
this structure-brace-damper system become 

 )()()()()( txmtPtxktxctxm gsdssssss &&&&& −=+++  (2.2) 
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where sm , sc , and sk  are the mass, damping, and stiffness of the SDOF structure, respectively, )(tPd is the
force exerted by the viscous damper, )(txs  is the story displacement, and )(txg&&  is the ground acceleration. 
 
2.1. Minimization of the mean square displacement response  
In order to analyze the system for response reduction, a displacement performance index, defined as the mean 
square of the structure’s displacement in the frequency domain, is used as the objective function 

 ωωσ dxJ sxs ∫
∞

∞−
== 22 )(  (2.4) 

For closed-form expression of the integral, response of the structure in the frequency domain needs to be 
determined. Assuming an elastic response, Fourier transform of Eqn. 2.2 and 2.3 permit the displacement 
response of the structure to be written as 

 )()()( ωωω gs xHx &&=  (2.5) 
where )(ωH  is the transfer function between structure’s displacement and ground acceleration. Although a 
more realistic power spectral density (PSD) function can be used for earthquake excitations, closed-form 
expression for the mean square of the response displacement in Eqn. 2.4 generally becomes difficult. In this 
paper, the PSD function of the ground excitation )(ωggS  is taken to be that of white noise excitation having a
constant spectral density oS  i.e. ogg SS =)(ω , so that a closed-form solution can be obtained. By defining

sss mk /=ω  and ssss mc ωξ 2/= , which are the natural circular frequency and the inherent damping ratio of the 
structure, respectively, and α  and β  as 
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which are the stiffness of the brace and the damping ratio of the viscous damper relative to that of the structure,
the performance index in Eqn. 2.4 can be integrated analytically for the white noise excitation (Crandall and 
Mark 1973) to give  
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The performance index is in a suitable form that optimal values for α  and β  that minimize the structure 
response can be determined. However, by solving 0/ =∂∂ αsJ  and 0/ =∂∂ βsJ  simultaneously, one would
find a set of optimal parameters that lead to infinite brace stiffness and infinite damping coefficient, which are 
unrealistic. Since the brace has finite stiffness in practical applications, the main design parameter strictly 
becomes the damping coefficient as a constant stiffness can be assigned to the brace. Thus, by setting

0/ =∂∂ βsJ , the optimal damping ratio of the damper and the resultant displacement performance index are 
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It can be seen from Eqn. 2.8 that the brace stiffness, as characterized by α , affects the efficiency of the 
damper. On purpose to quantify the influence of the brace stiffness, the displacement performance index of the
original system, i.e. without added dampers, is first considered, which is given by  
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Figure 3 Optimal design parameters for a SDOF structure with a Maxwell model under white noise excitation 

 
The improved performance opt,sJ  can be examined relative to its original displacement performance index

orgsJ ,  using the ratio sTR , referred to as the target reduction for the response displacement, which is defined as
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2.2. Observations from the SDOF system   
The brace-damper system can be designed on the basis of a target reduction in the response displacement. Note
that the target reduction in Eqn. 2.10 does not depend on the damping ratio β  of the damper but depends on 
the brace stiffness ratio α  and the inherent damping ratio sξ  of the structure. Once the target reduction in 
mean square displacement is selected, Eqn. 2.10 can be inverted to give the brace stiffness, which is given by

sb kk α= . Upon substituting the brace stiffness ratio and structural damping ratio into Eqn. 2.8a, the damping 
coefficient can be determined from βωssd mc 2= . Figures 3(a) and (b) show the target reduction sTR  and the 
optimal damping ratio opts ,β  as a function of the brace stiffness ratio α  for structural damping ratios =sξ 2% 
and 5%. It can be seen from Figure 3(a) that TRs increases rapidly with α in the small brace stiffness range. 
This means that the system is characterized by a fast reduction in response displacement as the brace stiffness 
increases when the brace stiffness is small. The target reduction shows a diminishing return in the large brace
stiffness range, say 1>α  for both damping ratios. The required optimal damping ratio opts ,β  can be found 
from Figure 3(b) upon the determination of the brace stiffness ratio α , or directly from Figure 3(c), given the 
target reduction. It can also be seen from Figure 3(c) that, for a given target displacement reduction, larger
damping coefficient is needed for the viscous damper if the inherent structural damping ratio %5=sξ .  
 
Figure 3(d) shows the response displacement reduction, defined by orgssorgs JJJ ,, /)( −  where sJ   and orgsJ ,

are given in Eqns. 2.7 and 2.9, versus the damping ratio β  of the damper for inherent damping ratio 
%2s =ξ .The solid line corresponds to the case of optαα =  for 80% target reduction in response displacement. It 

can be seen that, when opts ,ββ = , the response reaches maximum reduction, which is 80% in this case, and when
opts ,ββ ≠ , the response reduction will be less than 80%. Since the brace stiffness can potentially be treated as a 

design parameter, it is instructive to examine the influence of non-optimal brace stiffness on the response 
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reduction. The upper dashed line in Figure 3(d) corresponds to the case when the brace stiffness is 20% greater 
than the optimal brace stiffness for 80% reduction, i.e. optαα 2.1= . In this case, there is a range of damping 
ratio β  where the response reduction will be greater than 80%. The lower dashed line in Figure 3(d)
corresponds to the case when the brace stiffness is only 80% of the optimal brace stiffness i.e. optαα 8.0= . In 
this case, the response reduction will always be less than 80% irrespective of the damping ratio β . It may thus 
be concluded that if a certain level of response reduction is targeted, then there exists a minimum brace stiffness 
below which the targeted response reduction cannot be achieved.  
 
3. ANALYTIC MODEL FOR MDOF STRUCTURES WITH MULTIPLE MAXWELL MODELS 
 
The dynamic response of a multistory building with n  degrees of freedom installed with viscous dampers at 
the top of Chevron-type braces is governed by the following two equations 

 ∑
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sM , sC , sK  are the nn×  mass, damping, and stiffness matrix of the structure, respectively, p  is the 
number of stories installed with viscous dampers, dir  is the 1×n  location vector of the viscous dampers in thi
story, diP  is the resisting force from the viscous damper at thi  story, eME ss −=  is the 1n ×  location vector
for the ground excitation, )(tsx is the 1×n  displacement vector of the structure, )(txg&&  is the ground
acceleration. To facilitate the process of optimal design, an auxiliary degree of freedom is introduced at the 
connection between the brace and viscous damper in order to define the deformation of the brace and viscous 
damper separately. The use of an auxiliary degree of freedom also enables the two equations of motion to be
compactly combined into one equation, which can be re-written in the following form 

 )()()()( txttt g&&&&& EKxxCxM =++  (3.4) 
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and 
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the superscript T  denotes the conjugate of the transpose of a vector or matrix, iu  is a 1×n  influence vector 
containing 1 at the structural degree of freedom where the damper is connected i.e. thi  story, and zero 
elsewhere, and iv  is a 1×n  influence vector containing 1 at the structural degree of freedom where the brace 
is connected i.e. thi )1( − story and zero elsewhere, ir  is a 1×p  location vector containing 1 at the position
associated with the thi damper in vector sx  and zero elsewhere. 
 
3.1. Minimization of the mean square displacement response  
Although a conventionally designed structure may be expected to respond inelastically under a design level 
earthquake, potential plastic deformation and hence structural damage can be avoided by judicious addition of
viscous dampers, introduced as part of the hazard mitigation strategy in order to ensure an elastic response of 
the structure. Similar to the SDOF system presented in Section 2.1, a displacement performance index can be
defined as the sum of the mean square of the interstory drift. To that end, Fourier transform of Eqn. 3.4 gives 
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where 12 ][)( −++−= KCMH ωωω j  is the )()( pnpn +×+  frequency response function, and )(ωX  and )(ωgx&&
are the Fourier transforms of )(tx  and )(txg&& , respectively, j  is the imaginary number 1− . In this paper, 
the story drift is converted to an interstory drift vector using a transformation matrix D  defined by  

 )()( tt Dxy =  (3.9) 
where )(ty  is the 1×m  response vector of interstory drift and D  is the )( pnm +×  transformation. The 
interstory drift vector )(ty  is subsequently used as the performance criterion for optimization. Note that Eqn.
3.9 selects partially the response of the structure for the performance index since nm ≤ . In equation form, the 
performance index can be written as the sum of the mean square of the ‘selected’ structural interstory drift as 
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where }{•tr  is the trace of a square matrix, and )(ωYYS is the PSD function matrix of the interstory drift
vector. Since the transfer function )(ωH  in Eqn. 3.8 contains a damping matrix C , the damping coefficients 
of the dampers are assembled into the damping matrix C  using a location vector b  such that 
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where T
iii ][ rub =  is a 1)( ×+ pn  location vector for the viscous damper at thi story. For optimization of the 

damper parameters, the following partial derivatives of the transfer function are needed 
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The partial derivative of the displacement performance index sJ  with respect to the damping coefficient dic
can be shown to be  
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3.2. Numerical procedure and verification  
The optimization of the design parameters results in a set of highly nonlinear simultaneous equations, closed 
form solution of which is difficult to obtain except for simple cases. The simultaneous equations are however 
readily amenable to numerical methods where the optimal design parameters can be readily determined for the 
dampers in a systematic fashion. In that regard, the conjugate gradient method (Rao 1996) is used to solve this 
unconstrained optimization problem. The method requires the gradients of the objective function to be 
determined, which have been derived in Eqn. 3.14. The conjugate gradient method also requires the calculation 
of an optimum step length, which has been determined using the golden section search method in this paper, as 
outlined in Rao (1996). Iterations are carried out such that if the certain level of target reduction is not satisfied, 
the brace stiffness is increased until the target reduction is reached.   
 
A verification of the proposed procedure is shown in Figure 4(a) and 4(b), where numerical solutions are 
compared to closed-form solutions using SDOF structure with a single Maxwell model. Although results in 
Figure 4(a) and 4(b) are identical to that presented earlier in Figures 3(a) and 3(b), these figures nonetheless
show that the numerical procedure developed for MDOF structures ‘converges’ to that of closed-form solution 
for the simple case of SDOF structures.    
 
4. Numerical example  
 
The proposed optimization procedure will now be verified using a two story shear building with two Maxwell
models, as shown in Figure 5(a). The structure is the same as that studied by Lavan and Levy (2006). A 3% 
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Figure 4 Verification of the proposed procedure by comparison of numeric results with closed-form solutions
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Figure 5 Numerical verification for multi-degree-of-freedom structures 
 

structural damping ratio is assumed for the first two modes of the original structure. The mass, stiffness of the 
original structure, and the transformation matrix for the horizontal displacement coordinate are 
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For installation of the viscous dampers, the brace stiffness is assumed to be 20% of the first story stiffness i.e. 
mkNkk bb /750021 == . The optimal damper coefficients determined from the proposed gradient-based search are 

s/m357.48kN1 ⋅=dc  and s/m332.64kN2 ⋅=dc for the first and second story dampers, respectively. The improved 
performance, as calculated by the ratio %33.67/)( ,, =− orgssorgs JJJ . This implies a reduction in the interstory 
drift of %33.67 . Since the proposed procedure involves rather complex numerical searches in the frequency 
domain, its validity needs to be verified separately. In this case, verification is confirmed by an independent 
time history analysis. In that regard, ground acceleration time history is first generated from the same white
noise PSD function used in the optimization procedure. The average reduction in interstory drift from five 
time-history runs is %67 , and is the same as the frequency domain results.    
 
An exhaustive search is further conducted on the two story shear building using the preset brace stiffness that is 
equals to 20% of first story stiffness, with the primary objectives of verifying (i) the accuracy of the proposed 
procedure, and (ii) the existence of a global maximum response reduction in terms of interstory drift. Results of 
the exhaustive search are shown in Figure 5(b) where the response reduction in interstory drift is plotted against 
the damper coefficients 1dc  and 2dc . It can be seen from the figure that the response reduction increases to a 
maximum of %22.67  at s/mkN3501 ⋅=dc  and s/mkN3252 ⋅=dc  based on a grid size of 25 s/mkN ⋅  and 25

s/mkN ⋅  for 1dc  and 2dc , respectively. Results from exhaustive search agree reasonable well with that of the 
gradient-based search ( s/mkN350 ⋅ versus s/mkN48.357 ⋅  for 1dc  and s/mkN325 ⋅  versus s/mkN46.332 ⋅ for 
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1dc ). A finer grid size in the exhaustive search is expected to yield better agreement between results of the two
search methods. Although not explicitly shown here, the damping ratio of the structure increases from 3% to 
8.43% for the first mode. It is also worth noting that, the serial arrangement of the brace and damper may result
in an increase in the frequency of the structure, which is counter intuitive for increasing damping. In this 
two-story example, the frequency of the first mode increases from 8.72 Hz to 9.7 Hz.  
 
5. Conclusions  
 
In this paper, effects of the brace stiffness are first investigated using a simple single-story structure with a 
viscous damper installed at the top of a Chevron-type (inverted V) brace. Closed-form solutions, in terms of 
story displacement, are derived for the simple model. Results from the simple model show that the brace 
stiffness needs not be excessively large compared to the story stiffness, unlike the common assumption in 
previous studies which suggested that the brace stiffness should be at least five times the story stiffness. For a 
given target reduction in response, there exists a minimum brace stiffness, which may be smaller than the story 
stiffness depending on the target reduction and the structure’s inherent damping ratio. Results also show that the 
reduction in response can be improved by a suitable combination of brace stiffness and damping coefficient.  
 
A new optimization procedure is proposed for multistory buildings with viscous dampers installed at the top of 
Chevron-type braces. Since the procedure is numerical in nature, its accuracy is first verified against the 
closed-form solution from the simple model. The procedure is subsequently applied to a two story shear 
building, which is shown to give good results compared to that of an exhaustive search. Numerical results from 
the two-story shear building also indicate that, for a given brace stiffness, there exists a global maximum in 
response reduction. Although not explicitly shown, the proposed procedure is capable of accounting for the 
higher modes of vibration as well as dealing with different power spectral density functions such as that from
wind or earthquake excitations. Even though the procedure is demonstrated using the interstory drift as the 
performance index, it can be easily extended to other structural response parameters such as floor accelerations 
or base shear force. By providing an initial guess of the brace stiffness, the proposed procedure will iteratively
search for the optimum brace stiffness and damper coefficients until the target reduction in response is achieved.
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