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ABSTRACT : 

In this paper, dam-reservoir interaction is analyzed using finite element approach. The reservoir fluid 

domain is assumed to be incompressible and inviscid. In the derivation of boundary conditions, it is 

assumed that the interface of dam and reservoir is vertical. Moreover, bottom of reservoir is assumed 

to be rigid and horizontal. The governing equation with related boundary conditions is implemented in 

the finite element code considering horizontal and vertical earthquake components. The weighted 

residual standard galerkin method with 8-node elements is used for developing finite element model. 

Both sommerfeld boundary condition and perfect damping boundary condition are developed for 

truncating surface of unbounded fluid domain and the results of two boundary conditions are 

compared with analytical results. 
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1. INTRODUCTION 

 

There are a large number of concrete dams in the world. Some of them are in seismically active 

areas. The analysis of dams is a complex problem due to the dam-reservoir interaction. An 

important factor in the design of dams in seismic regions is the effect of hydrodynamic pressure 

exerted on the face of dam as a result of earthquake ground motions. The seismic response of a 

gravity dam is influenced by its interaction with reservoir.    

The hydrodynamic pressure acting on dam faces during earthquakes has been recognized as a 

main loading in the design of dams. The first analysis of hydrodynamic force on dam faces during 

earthquakes was reported by Westergaard (1933). The results were checked by a simplified 

analysis. In the following years, many researchers have extensively studied hydrodynamic 

analysis of dam using various methods.   

For an accurate analysis of hydrodynamic pressure on the dam having irregular geometries, the 

reservoir is generally treated as an assemblage of finite elements. The finite element method is 

becoming more popular in reservoir simulation, partly due to its flexibility in dealing with boundaries. The 

element shape is not required to be square so that the element mesh can handle a very complex geometry. 
Zienkiewicz et al. (1965) studied the dynamic response of submerged structures in incompressible 

water using finite element method. Chopra (1970) used the finite element method as a numerical 

technique for dam-reservoir analysis. He studied the response of the hydrodynamic force on a 

dam impounding reservoir under horizontal excitation.  
In the finite element analysis of dam-reservoir interaction problems arise due to unbounded reservoir 

domain. This problem is solved by truncating the infinite reservoir domain at a certain distance from dam-

reservoir interface. For an accurate analysis, the behavior of outgoing pressure waves at the truncation 

surface must be truly represented. The applied truncated boundary at reservoir farfield depends on 

geometrical configuration. For a finite reservoir, the reflected waves from the truncated farfield are not 

negligible and may result in significant increase in induced hydrodynamic pressure in the reservoir. For the 

case of an infinite reservoir, the location of truncated boundary condition for the outgoing pressure waves 

in a numerical model with limited length is very important in hydrodynamic analysis. The proper boundary 
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condition at truncated boundary of reservoir has been the subject of many studies in dynamic analysis of 

structures.  

Zienkiewicz et al. (1977) examined the formulation of infinity conditions in the solution of 

pressure wave equation in the reservoir. They concluded that sommerfeld boundary condition is 

appropriate for large reservoir model and can be easily incorporated in the finite element 

discretization of the reservoir domain. Hall and Chopra (1982) studied the hydrodynamic effects 

of the impounded reservoir on the seismic response of gravity dams using one-dimensional 

boundary conditions for the radiation of waves in truncated boundary. Sharan (1985) proposed a 

radiation boundary condition for the truncated boundary of the incompressible reservoir model. 

His proposed boundary condition was based on analytical solution for the pressure wave equation 

in the reservoir under horizontal earthquake component in frequency domain. He extended the 

proposed truncated boundary condition for a compressible model.  
The objective of this paper is present a formulation for dam-reservoir system analysis using finite element 

model considering horizontal and vertical components of earthquake. . In the derivation of boundary 

conditions, it is assumed that the reservoir fluid domain is incompressible. The interface of dam and 

reservoir is considered vertical and bottom of reservoir is assumed to be rigid and horizontal. 
 

2. FORMULATIN OF UNBOUNDED RESERVOIR DOMAIN 

 

For incompressible and inviscid fluid, the hydrodynamic pressure resulting from the ground motion of 

a rigid dam satisfies the Laplace equation in the following form: 

 

 02 =∇ P     (4.1) 

 

Following boundary conditions are defined by assuming effects of surface waves and viscosity of the 

fluid are neglected: 
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    0=P     on   3S     (4.4) 

 

 

    0=P     on   4S  (4.5) 

 

 

In the above equations, xa and ya are the earthquake acceleration subjected on dam face and reservoir 

bottom in the horizontal and vertical direction, respectively. The reservoir domain has been shown in 

figure 1. 1S , 2S , 3S  and 4S  are dam-reservoir interface, reservoir bottom, truncated boundary and 

reservoir free surface, respectively.    
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Figure 1:Reservoir domain and boundary conditions 

 

 

Analytical solution of Eqn. (4.1) due to given boundary conditions is: 
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Where πλ
2

12 −= n
n  and ,...3,2,1=n . 

 

3. FINITE ELEMNT FORMULATION 

 

Assuming hydrodynamic pressure to be unknown, the pressure at any point inside an element can be 

written by 
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Where 

→
)(eP  is the vector of pressure at the element nodes and )],([ yxN  is the matrix of interpolation 

functions. 
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To solve with finite element method, reservoir domain was divided to E element with m node. Using 

standard galerkin method, we can write the Eqn. (4.1) in the following form : 
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In which iN  is the interpolation function. 

According to mentioned boundary conditions and using of gauss-green theorem the last equation is 

written as following:  
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At last the above equation is written as following:  
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For mi ,...,2,1=  Eqn. (4.11) is written in the below form: 
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The above equation is considered as following:  
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In the above equation, 
)(eC  is contained the boundaries of dam-reservoir and reservoir-foundation 

interface and S   is reservoir domain.  

Obtained Eqn. (4.13) is placed in total matrix regarding to element location. Then we can write for 

whole domain: 

 [ ]
→→

= FPK  (4.17) 

 

Eqn. (4.17) is solved to find the reservoir response with so-called boundary conditions. 
 

4. CASE STUSY 

 

We have assumed steady state condition and incompressibility characteristic for water to describe the 

finite element model used in present study. Due to availability of analytical solution of prescribed 

problem we used simple boundary assumptions to compare efficiency and accuracy of finite element 

model with applying simple boundaries. 

To solve the problem and evaluate the produced finite element model, reservoir of Sefidrud dam in 

Iran has been considered as a case study. Its reservoir height is 106 meter. Density of water assumed 

1000 
3/mkg  and dam excitation acceleration considered the maximum of Manjil earthquake 

accelerator that was exerted on Sefidrud dam in 1993. Standard Galerkin method with 8-node 

elements was used to model the reservoir. Figure 2 shows the meshing of Sefidrud reservoir domain. 
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Figure 2: Meshing of Sefidrud reservoir domain 

 

Induced hydrodynamic pressure on dam-reservoir interface was achieved with before mentioned 

boundary conditions. Diagrams 3 and 4 depict results for different length to height ratio of dam. 

Analytical solution shows agreement with finite element results. 
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Figure 3: Hydrodynamic pressure distribution curve at dam height for 0.1=HL  
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Figure 4: Hydrodynamic pressure distribution curve at dam height for 0.2=HL  
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Diagrams show that the deviation of present model from analytical solution is negligible in 2/ =HL  

ratio while for 1/ =HL  ratio there is error. This enables us to use 8-node finite element model when 

truncation boundary distance is twice the height of dam. 

It is important to describe efficient farfield boundary condition for an effective finite element model. 

So-called distant boundary condition implies complete dissipation of pressure wave when they pass 

the truncated boundary. The error resource is because of implementation of previously assumption 

which in analytical solution full dissipation occurs in an infinite distance. Considering the truncated 

boundary more far from dam will minimize the error at the expense of increasing the calculation 

effort. 

In some researches, sommerfeld boundary condition is used instead of aforementioned boundary 

condition with Eqn. (4.4). It is described for incompressible fluid as follow: 

 

 0=
∂
∂
x

P
 (4.18) 

 

Aforementioned example has been analyzed with farfield boundary condition described with Eqn. 

(4.18) using finite element model. Diagrams 5 and 6 depict results for different length to height ratio 

of dam for this case. Results were compared with analytical solution. 
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Figure 5: Hydrodynamic pressure distribution curve at dam height for 0.1=HL  
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Figure 6: Hydrodynamic pressure distribution curve at dam height for 0.2=HL  
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Finally, maximum hydrodynamic pressure results have been shown in table (4.1) for both farfield 

boundary conditions in different ratio of length to height and comparison is made with analytical 

solution. 

Table 4.1: Maximum of hydrodynamic pressure on dam ( 2/mN ) 

Error with 
0=P  

at farfield 

Error with 

0=∂∂ xP  at 

farfield (%) 

Maximum pressure 

with analytical 

solution 

Maximum pressure 

with 0=P        

at farfield 

Maximum pressure 

with 0=∂∂ xP  

at farfield 

 

H

L 

19.12 5.620 46163.13 37335.09 48756.09 1 

3.243 0.230 46163.13 44666.12 46269.67 2 

0.638 0.007 46163.13 45868.34 46166.77 3 

0.133 0.002 46163.13 46101.82 46162.35 4 

 

5. CONCLUTION 

 
Considering results from provided finite element model regardless supposed radiation condition, 

indicates efficiency and accuracy of 8-node finite element method. 

Comparing responses related to two states of farfield boundary condition and analytical solution one 

can conclude that on condition of avoiding extra computational effort, if farfield truncated boundary is 

selected near the dam, complete damping boundary condition at farfield will possess better results in 

comparison to sommerfeld boundary condition. In this case the sommerfeld boundary condition is not 

the good choice to represent behavior of wave radiation at farfield and proper radiation should be 

searched. If the truncated boundary is located rather far from the dam, obtained results for two 

considered states of farfield boundary condition are approximately the same.  

According to provided results it can be conclude for incompressible fluid, if the distance of truncated 

location of reservoir domain is twice or more than height of reservoir, considering sommerfeld 

boundary condition or complete damping condition is not so influential on hydrodynamic response. It 

can be generalized to the other radiation boundary conditions for incompressible fluid.   
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