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ABSTRACT : 

Many dams worldwide have been in service over 50 years and are located in high seismicity areas. The initial 
seismic design of these critical structures was generally conducted using simplified methods that do not fully take 
into account of the dynamic nature of earthquake excitation and the complex fluid-structure interaction. Although 
significant work has been done to evaluate the seismic response of dams, there is still a need to improve 
commonly used simplified methods and to accurately assess the efficiency of more sophisticated ones. The first 
part of this paper proposes new practical formulas to evaluate earthquake-induced hydrodynamic loading on 
concrete dams. This original technique generalizes the classical added-mass formulation by including the effects 
of dam flexibility and reservoir bottom absorption. Frequency response functions of hydrodynamic pressures 
within the reservoir are compared to analytical solutions. It is shown that the method accurately predicts 
hydrodynamic loads and that it can be easily implemented in a computer program or a spreadsheet. The second 
part of the paper investigates finite element modeling aspects to assess the seismic performance of concrete dams. 
Several finite element models of dam-reservoir systems with various dimensions are used to conduct frequency
and time domain analyses. Potential-based fluid elements and viscous boundary conditions are validated against 
analytical solutions and they are shown to perform adequately for practical seismic analysis of dam-reservoir 
systems. 
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1. INTRODUCTION  
 
Dam failures may result in catastrophic consequences, causing considerable loss of life and property. Research 
dealing with dam safety has been extensively active during the last 50 years to improve understanding of the
complex behavior of dam-reservoir systems and implement more reliable approaches into the codes of practice. 
Rigorous techniques to investigate dynamic dam-reservoir interactions are relatively new compared to more 
established static dam analysis tools. The milestone of such rigorous treatment dates back to the pioneering work 
of Westergaard (1933), who proposed to model water action on a dam subjected to horizontal ground 
accelerations as an equivalent added mass height-wise distribution applied on the dam face. Although 
Westergaard’s analytical solution neglected dam flexibility and water compressibility, it has been widely used for
many decades to design earthquake resistant concrete dams. Dynamic interactions in dam-reservoir systems are 
complex phenomena requiring advanced mathematical and numerical modeling. Although available sophisticated 
techniques can handle many aspects of these phenomena, simplified procedures are useful and still needed to
globally evaluate the effects of dam-reservoir interaction. This section of the paper proposes an original and 
practical procedure to evaluate earthquake induced dam-reservoir interactions, including the effects of dam 
flexibility, water compressibility and reservoir bottom wave absorption. In a previous work, the first author of the 
present paper proposed a simplified closed-form formulation to evaluate earthquake-induced hydrodynamic 
pressures on concrete dams (Bouaanani et al. 2003). The method includes the effects of water compressibility and 
reservoir bottom wave absorption. The influence of dam deformability was however neglected and therefore the 
total hydrodynamic pressure exerted on a dam during an earthquake could not be determined. The first part of this 
paper proposes a newly improved and practical formulation where the rigid dam restricting assumption is waived.
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On the other hand, extensive work has been dedicated to the development of solid and fluid finite element
formulations, and their implementation in fluid-structure interaction problems. Among these techniques, 
Eulerian-based formulations present several advantages and were successfully applied to transient wave 
propagation problems (Neilson et al. 1981; Everstine et al. 1983, Olson and Bathe 1985). In the second part of 
this paper, a potential-based formulation is adapted to investigate dam-reservoir systems. The formulation is 
validated against analytical solutions obtained over a wide frequency range.  
 

2. SIMPLIFIED FORMULATION 
  
2.1. Theoretical background 
 
The simplified geometry of a dam-reservoir system is shown in Figure 1. The dam has a total height Hs and it 
impounds a semi-infinite reservoir of constant depth Hr. Sediments that may be deposited at reservoir bottom are 
also considered. A Cartesian coordinate system with axes x and y with origin at the heel of the structure is adopted 
and the following main assumptions are made: (i) the dam and the water are assumed to have a linear behavior; 
(ii) the water in the reservoir is compressible and inviscid, with its motion irrotational and limited to small 
amplitudes; and (iii) gravity surface waves are neglected. Under these assumptions, the hydrodynamic pressure 
p(x,y,t) in the reservoir (in excess of the hydrostatic pressure) obeys the wave equation 
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where 2∇ is the Laplace differential operator, t the time variable; ρr the mass density of water and Cr the 
compression wave velocity given by  
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in which μr denotes the bulk modulus of water. 
 

 
 

Figure 1. Dam-reservoir system with a simplified geometry. 
 
Considering harmonic ground motions, hydrodynamic pressure in the reservoir can then be expressed in 
frequency domain as ( )( ) ( )( ) tx,y,ptyxp ωξξ ω ie,, = where the superscript ( )ξ denotes the x or y earthquake direction,

ω the exciting frequency, and ( ) ( )ωξ x,y,p  a complex-valued frequency response function. Introducing this 
transformation into Eqn. 2.1.1 yields the classical Helmholtz equation 
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The complex valued pressure frequency response functions )(ξp  along directions x,yξ =  can be expressed as 
(Fenves and Chopra 1984) 
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where )(
0
ξp is the frequency response function for the hydrodynamic pressure at rigid dam face due to ground 

acceleration along x,yξ =  direction, jp  is the frequency response for hydrodynamic pressure due to horizontal 

acceleration ),0()( )()( yy x
j

x
j ψψ =  of the dam upstream face, )(ξ

jZ  is the generalized coordinate along earthquake 
excitation direction ξ , and ms the total number of mode shapes included in the analysis. Throughout this paper, 
hydrodynamic pressures )(

0
ξp and jp will be referred to as the “rigid” and the “flexible” parts of the total 

hydrodynamic pressure p , respectively. The boundary conditions to be satisfied by hydrodynamic frequency 
response functions translate compatibility of pressures and displacements at dam-reservoir interface and wave 
absorption at reservoir bottom (Fenves and Chopra 1984). Boundary conditions to model free surface, gravity 
waves or the presence of an ice cover at reservoir surface were also proposed (Bouaanani et al. 2003). The 
complex frequency response functions of hydrodynamic pressures ( )xp0  and jp  can then be expressed as the 

summation of mr response functions ( )ξ
np0  and jnp corresponding each to a reservoir mode n 
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where nλ  and Yn  are complex-valued frequency dependent eigenvalues and orthogonal eigenfunctions 
satisfying, for each reservoir mode n 
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and where the terms nβ , nκ , I0n and Ijn are given by 
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2.2. Simplified expressions 
 
The x–component of the structural mode shape jψ can be approximated as a polynomial function 

k

k
k

x
j H

yay ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

s

)( )(ψ  (2.2.1) 

where y is the coordinate varying over the height of the structure measured from the bottom. We show then that
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the rigid and flexible hydrodynamic pressures at acoustical mode n are related by 
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and where the complex-valued function mΛ  is defined by  

!m
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m
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for complex and integer numbers, z and m, respectively. This important and original relation relates the flexible 
and rigid parts of hydrodynamic pressure for a given reservoir acoustical mode to the vibration of the structure 
along a given mode shape. The rigid pressure can then be determined using closed-form expressions similar to 
those developed by the first author of this paper (Bouaanani et al. 2003). These expressions take account of water 
compressibility and wave absorption at reservoir bottom and they were shown valid for a wide frequency range.  
 
2.3. Numerical application 
 
The simplified method presented in the previous section is applied to a simplified triangular dam cross-section 
with geometry inspired from the tallest non-overflow monolith of Pine Flat dam (Fenves and Chopra 1984). The 
dam has a height Hs = 121.92 m, a downstream slope of 0.8 and a vertical upstream dam face. The following dam
material properties are selected: a Poisson’s ratio νs = 0.2 and a mass density ρs = 2400 kg/m3.  Two values of 
modulus of elasticity Es = 25000 MPa and Es = 35000 MPa are considered. The water is assumed compressible, 
with a velocity of pressure waves Cr = 1440 m/s, a mass density ρr = 1000 kg/m3 and a bulk modulus νr = 2.1×103 

MPa. A cubic profile is chosen to approximate the first structural mode shape )(
1

xψ . Eqns. 2.2.3, 2.2.4 and 2.2.2
are used to determine the response functions Fjn, Gjn and np1 . Eqn. 2.1.4 is then used to compute the hydrodynamic 
pressure frequency response functions illustrated in Figure 2. Frequency responses are plotted against the 
frequency ratio ω/ω1 where ω1 is the fundamental vibration frequency of the dam on rigid foundation with an 
empty reservoir. A sufficient number of reservoir modes Nr=5 is included in the analysis. The figure shows an 
excellent agreement between the simplified formulation and the analytical solution. We also observe that the 
quality of the approximation does not decay as wave reflection coefficient decreases. 
 
 
3. FINITE ELEMENT MODELING 
 
3.1. Potential-based formulation 
 
The analytical formulation presented above includes the combined effects of water compressibility, dam
flexibility and wave absorption at reservoir bottom. It is however restrained by the simplified rectangular 
geometry of the impounded reservoir. In this section a U−φ potential-based formulation is used to investigate 
dam-reservoir-foundation systems with irregular geometries. Assuming an irrotational water motion and 
infinitesimal velocity and density changes, implies the existence of a velocity potential ( )tyx ,,φ  satisfying the 
equations of continuity and energy conservation (Landau and Lifshitz 1959)  
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Figure 2. Absolute value of frequency response functions of normalized hydrodynamic pressure at dam heel: (a) α
= 0.95 and Es = 25000 MPa; (b) α = 0.95 and Es = 35000 MPa; (c) α = 0.65 and Es = 25000 MPa; (d) α = 0.65 and
Es = 35000 MPa; – Analytical solution; -- Simplified formulation. 

  
 
Eqn. 3.1.1 is associated to the essential boundary condition  

0=φ  (3.1.2) 
on the free surface and rigid boundaries, and to the natural boundary condition  

nu
n
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∂
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on moving fluid-structure interfaces with positive normal velocity nu& , corresponding to unit surface normal 
vector n pointing into the fluid and out of the structure.  
 
Using standard techniques, the weak variational form of Eqn. 3.1.1 can be obtained  
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in which Vr indicates the reservoir domain, and Sr a reservoir boundary where normal velocity is prescribed. 
Under earthquake excitation, the dynamic response of the dam and the reservoir are coupled through 
compatibility of velocity potential (resp. hydrodynamic pressure) and prescribed normal velocity (resp. normal 
acceleration) at dam-reservoir interface. Dam-reservoir interaction is contained in the second term of Eqn. 3.1.4.
Figure 3 shows a finite element mesh of a dam monolith impounding a reservoir with an irregular shape. Using 
classical Galerkin discretization, the coupling between the dam and reservoir sub-structures yields the system of 
equations  
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where vectors U and Φ contain the nodal displacements relative to the ground and the nodal velocity potentials,
respectively. 
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Figure 3. Finite element model a dam-reservoir system and corresponding boundary conditions. 
 

Sub-matrices Mss and Kss represent the mass and stiffness matrices for the dam substructure, and Mrr and Krr those 
for the reservoir. A Rayleigh damping matrix Css is considered for the dam substructure and sub-matirces Crs and 
Csr account for dam-reservoir interaction through enforced equilibrium and compatibility at fluid-structure interface 
as illustrated in Figure 3. Sub-matrix Crr accounts for damping due to energy dissipation at the bottom and/or at the 
far upstream boundary of the reservoir and is given by 

∫=
r

dr
T
rrrr S

Sq NNC ρ  (3.1.6) 

in which Nr is a standard isoparametric shape function matrix for fluid elements and Ss denotes surface of the 
reservoir bottom boundary. Using the technique proposed by Lysmer and Kuhlemeyer (1969), the absorptive 
condition at reservoir bottom can be approximated by a series of viscous dampers placed at the 
reservoir-foundation interface. To ensure compatibility between fluid and damper elements and enable 
fluid-structure interaction, isoparametric beam elements are inserted along reservoir-foundation interface. Damper 
elements are then built by connecting beam element nodes to the ground. Damper and beam element nodes are 
constrained to move only perpendicularly to the reservoir bottom boundary. In the next section, the 
potential-based formulation and boundary conditions described previously are confronted against analytical 
solutions when available or boundary element solutions otherwise. 
 
3.2. Numerical results 
 
Gravity dam monoliths impounding reservoirs with different shapes were analysed using the potential-based 
formulation presented above. Results are shown for the same triangular dam cross-section described in 
section 2.3. The finite element models are built using the software ADINA (2006). The dam and reservoir are 
modeled using 9-node isoparametric plane stress finite elements including incompatible modes and 9-node 
potential-based finite elements, respectively. Analytical and finite element solutions are presented in Figure 4 for 
a rectangular reservoir length Lr = 2Hs and height Hr = Hs. We consider frequency sweep ratios ω/ω0 varying from 
0 to 4 where ω0= πCr/(2Hr) denotes the natural frequency of the full reservoir. The figure illustrates an excellent
agreement between the results of potential-based fluid elements and the analytical solution is excellent for the 
rigid case. It is seen that dam flexibility and structural damping affects the accuracy of the results with some slight 
discrepancies appearing at higher frequencies larger than 3ω0. Figure 5 illustrates the effects of reservoir shape 
and wave absorption at reservoir bottom. The viscous boundary condition described in the previous section is 
applied along the reservoir bottom using consistent lumping. 
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Figure 4. Absolute value of frequency response curves of normalized hydrodynamic pressures at the heel of the 
dam impounding a rectangular reservoir with α = 1.0: (a) and (b) Rigid dam; (c) and (d) Flexible dam with 5% 
structural damping. – Analytical solution; -- Potential-based finite element solution. 
 
 
 

 
Figure 5. Absolute value of frequency response curves of normalized hydrodynamic pressures at the heel of the 
dam: (a) and (b) Rectangular reservoir with α = 0.6; (c) and (d) Triangular reservoir with α = 0.6. – Analytical 
solution; -- Potential-based finite element solution. 
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For the triangular reservoir (Figs. 5 (c) and (d)), finite element results are compared to a boundary element 
solution obtained using a program developed by the first author (Bouaanani and Paultre 2005). Figure 5 clearly 
shows that the potential-based finite element formulation combined with the viscous boundary condition give 
excellent results for wide frequency and wave absorption ranges. This potential-based formulation can also be 
efficiently used with other boundary conditions to account for energy dissipation at the reservoir far upstream or 
for dynamic interaction with an ice sheet covering the reservoir (Bouaanani and Chagnon 2006).    
  

4. CONCLUSIONS 
 
This paper presented simplified expressions and more advanced finite element techniques to assess the effect of 
fluid-structure interaction in seismically excited dam-reservoir systems. Several dam-reservoir systems with 
various shapes were used. The hydrodynamic frequency response curves obtained using the proposed methods 
were validated against analytical solutions when available and boundary element solutions otherwise. Excellent 
agreement is obtained over practical frequency and wave absorption ranges. The proposed techniques are shown 
to perform adequately for practical seismic analysis of dam-reservoir systems in frequency and time domains.  
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