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Abstract  To know the dynamic environment of seismogenic progress, we try 
to get the underground medium information by studying the physical characteristics of 
the lithosphere and upper mantle, such as the regional P-wave velocity structure, spatial 
distribution of S-wave attenuation, spatial distribution of Qc value of coda wave. And 
we try to get the underground dynamics information by studying the regional stress 
field which is partitioned in horizontal orientation and detached at vertical direction, as 
the crustal S-wave splitting, the seismic mechanism of middle and large earthquakes, 
the strain field of GPS, the anisotropy of Pn-wave, the upper mantle SKS splitting, and 
so on. Then, with the dynamic models, the coupling extent of different spheres has 
been analyzed. The results show, the most important dynamic environment of 
seismogenic progress in Sichuan-Yunnan and its adjacent regions is the lithosphere 
asymmetry at the structure, physical characteristics, dynamical operation, and so on, 
especially the flow trait of lower crust and the drag force of upper mantle acting on the 
crust. 
Keyword: Sichuan-Yunnan and its adjacent regions, medium structure, stress 
field of different layers, simulation of finite element 

 

Introduction 

Sichuan-Yunnan region locates in the southeast side of Tibetan Plateau. 

The collision of India plate and Eurasian plate in the past 45 Ma not only 

shortens and uplifts the crust of the Tibetan Plateau, but also makes the 

material of the plateau extrude laterally toward east[1-7]. All these effects 

caused the strong tectonic activities of Sichuan-Yunnan region in the past 

and still play an important role in present tectonics (fig. 1). 

For seismicity, Sichuan-Yunnan region is one of the most tectonic 

active regions in China. In Sichuan and Yunnan, according to the report of 
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Bureau, there are 639 earthquakes from 26 B.C. to 2001 with magnitude 

larger than M5. Among them, amplitudes of 475 earthquakes are between 

M5.0 and M5.9, 124 earthquakes are between M6.0 and M6.9, 39 

earthquakes are between M7.0 and M7.9, and the last one is larger than 

M8[8]. According earthquake data in in the 20th century, there are 65 

earthquakes whose magnitude is larger than M7. Just in Sichuan-Yunnan 

region there are 21 earthquakes whose magnitude is larger than M7, which 

equals to 30% in total big earthquakes happened in China. Besides, most 

earthquakes over M7 are concentrated in the major faults between tectonic 

blocks, and the source depths are concentrated between 5~25 km. 
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Fig1 Active faults and blocks in southwest China 

 

In this research, we try to get the underground medium information by 

studying the physical characteristics of the lithosphere and upper mantle, 

and the dynamics information by studying the regional stress field which is 

partitioned in horizontal orientation and detached at vertical direction. Then, 

with the dynamic models, the coupling extent of different spheres has been 
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analyzed, and the cognition of lithosphere structure, physical characteristics 

of medium, stress and strain field has been increased, and the dynamic 

environment of seismogenic progress has been made certain further. 

Underground medium information 

We have selected about 60,000 arrival times recorded by 205 regional 

stations, with the seismic tomography theory[9] and three dimensional ray 

tracing method[10,11], to determine a detailed three-dimensional (3-D) P wave 

velocity structure of the lithosphere in southwest China (fig. 2). Then we 

figure out the medium structure and tectonic characteristics of different 

depth which are reflected by the 3-D P wave velocity image in this area, 

associating with the previous geological features and geophysical data. The 

results suggest that, 1）low-velocity layers exist far and wide in the middle 

and deep crust under the large fault zones around the Sichuan-Yunnan block, 

which can be taken as the decoupling layer adjusting the faults and blocks 

movement; 2） some deep structures related with paleo-block boundaries, 

and the trends and extending depths of primary active faults, can be 

distinguished from the P wave velocity image.  
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Fig 2 P wave velocity structure at different depth in southwest China 

 

We have selected 27,530 ML amplitude records from 5,897 events 

recorded by 149 stations, as reported in the Annual Bulletin of Chinese 

Earthquakes (ABCE) and regional seismic network of Yunnan province and 

Sichuan province, and have used tomographic imaging to estimate the 

lateral variations of the quality factor Q0 [12~14](Q at 1Hz) beneath the crust 

of Sichuan-Yunnan and its adjacent regions. Estimated Q0 values vary from 

200 to 600 with an average of 400 (fig. 3). Q0 value is consistent with 

tectonic and topographic structure. Q0 is low in the active tectonic regions 

with many faults, such as the Haiyuan-Qilian, Fenhe-Weihe, East Kunlun 

zones, Western Sichuan – Northwestern Yunnan – Baoshan area and Joint of 

Yunnan and Guizhou – Kunming– Simao area, and high in the stable regions, 

such as Sichuan Basin, Markem block, Western Guangxi – Eastern Yunnan 

block, Ordos Craton and Qinling – Dabie area.  

 
Fig.3 Imaged Q0 lateral variations and large earthquakes distribution 
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The coda-wave attenuation quality factor Qc of the areas in Yunnan 

Province were estimated using the single-scattering attenuation model of 

Sato[15~21] from 5668 local seismic events recorded by a regional network of 

22 digital stations from the latter half of 1999 to 2003. The used events were 

in epicentral distances up to 50 km. According to the variation of Q0 and η, 

we classified the quality factor Qc to two types (fig. 4). The classified results 

showed that there was regional distributing characteristic in medium 

structure of the areas in Yunnan Province, and this characteristic could be 

elementarily interpreted by geological structures, seismic activity and heat 

flow. Generally speaking, the quality factor Qc of Central Yunnan Block and 

its boundary area are notably less than those of other regions, as the 

intensity of tectonic activity of these areas. According to seismic activity, 

there were large earthquakes in the areas with lower Qc, and there are few or 

only some little earthquakes at the areas with higher Qc. Besides, there is 

negative relation between quality factor Qc and heat flow of the areas in 

Yunnan Province, namely higher heat flow corresponding to lower Qc and 

lower heat flow corresponding to higher Qc. 
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Fig.4 Distribution of Coda Qc in Yunnan and its adjacent areas 

(a) Coda Qc and the active tectonic block boundaries;(b) Coda Qc and the large 
earthquakes;(c) Coda Qc and the heat flow 
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Dynamics environment 

We collect 6 361 waveform data to calculate the shear wave splitting 

parameters from a regional seismic network of 22 digital stations in Yunnan 

and its adjacent area from July 1999 to June 2005. By using the 

cross-correlation method[22~25], 64 splitting events of 16 stations are 

processed. We also collect the splitting results of 8 earthquake 

sequences[26~32] to present the characteristics of shear wave splitting in 

Yunnan and its adjacent areas(fig. 5).  

The orientations of maximum principal compressive stress of 3 

sub-regions in this area are derived from the CMT focal mechanism 

solutions of 43 moderate-strong earthquakes provided by Harvard 

University by the P axis azimuth-averaging method. The principal strain 

rate[33] at each observatory is deduced from the observations of Crustal 

Movement Observation Network of China during the period from 1999 to 

2004. In addition, the data of Pn anisotropy[34] and SKS splitting[35] of 

Yunnan and its adjacent areas are also collected(table.1).  

Table.1 GPS maximum principal compressive strain, P axis of focal mechanism, Pn 
fast wave velocity and SKS fast wave axis in Yunnan and its adjacent areas  

GPS maximum 
principal P axis of focal  

mechanism 
Pn fast wave  

anisotropic velocity  SKS fast wave axis 
Region compressive strain 

R  R R R Number Number Number Number /(°) /(°) /(°) /(°) θ θ θ θ

Central Yunnan 54 151 0.85  11 158 0.96 24 169 0.94 17  84 0.90 
Southwestern Yunnan 75  15 0.81  12  28 0.95 53 110 0.88 14 101 0.97 
Northwestern Yunnan 16 134 0.73   6 108 0.65 16 108 1.00  4   9 1.00 

 

 

Fig.5 Fast wave polarization direction and zoning predominant direction of 16 
stations and eight earthquake sequences in Yunnan and its adjacent areas 

(a) Fast wave polarization direction; (b) Zoning predominant distribution 
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Fig.6 Physical parameters manifesting stress-strain orientation of each 

layer in Yunnan and its adjacent areas and zoning distribution of 
average orientation of each layer 

(a) Layer sketch manifested by different physical parameters;(b) Distribution of average direction of 

each layer in the Central Yunnan block;(c) Distribution of average direction of each layer in the 

southwestern Yunnan; (d) Distribution of average direction of each layer in the northwestern Yunnan 

 

We have discovered from this study(fig.5 and fig.6) that the continental 

lithosphere, as a main seismogenic environment for strong earthquake, can 

be divided into blocks laterally; the mechanical behavior of lithosphere 

varies with depth and can be divided into different layers in the vertical 

orientation; the information of crustal deformation obtained from GPS might 

be affected by the type of blocks, since there are different types of active 

blocks in Yunnan and its adjacent areas; the shear wave splitting in this 

region might be affected mainly by the upper crust or even the surface 

tectonics. 

Simulation of finite element 

Considering previous work of different people, and the new results of 

different research[36~39], as active faulting, three dimensional velocity 

structure, geodesy, seismicity, we give a new three-dimensional dynamic 

model of Sichuan-Yunnan and its adjacent regions. The whole model is 
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divided to three regions horizationally, and four layers vertically. For 

Sichuan-Yunnan region（98°-106°E，21°-33°N）, there are 5890 elements, 

and 3050 nodes distributed horizationally; the whole model consists of 

100130 elements and 62 075 nodes. 

From GPS data[40], we define the velocity of the finite element model’s 

edge. From SKS’s anisotropy data[35], we determine the flow pattern of the 

upper mantle’s material(fig.7).  

（a） （b）

 
Fig.7 Drag force on the model bottom 

（a）Drag to the east at south of 26°; （b）Drag to the west at south of 26° 

 

Considering all these above-mentioned situations, we built five models: 

model 1、2、3、4、5. Conditions of different finite element model are shown 

in table 4. In model 1, we only used elastic bodies; constraints on boundary 

do not change with depth; constraints are on the upper 60 kilometers; we 

don’t take the drag force from the bottom into account. In model 2, we used 

elastic bodies for every layer; constraints are on the upper 25 kilometers; the 

drag force of the upper mantle is 5 kPa, as shown in figure 7a. In model 3, 

we also used elastic bodies for every layer; constrains are on the upper 25 

kilometers; the drag force of the upper mantle is 5 kPa, shown in Figure 7b. 

Model 4 is based on model 2; considering the rheology of the material of the 

lower crust in Sichun-Yunnan Diamond block, we used viscoelastic bodies 

( Maxwell bodies) ; constraints are on the upper 25 kilometers; the drag 

force of the upper mantle is 1 MPa, shown in figure 7a. Model 5 is based on 

model 3. Considering the rheology of the material of the lower crust in 

Sichun-Yunnan Diamond block, we used viscoelastic bodies; constraints are 
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on the upper 25 kilometers; the drag force of the upper mantle is 1 MPa, 

shown in figure 7b. 
 

Table. 2  Distinguish stress azimuth at 10km from at 40km in different subarea of 
different models 

Northwest Sichuan Block Central Yunnan Block Baoshan-Pu’er Block 
model 

10km 40km 10km 40km 10km 40km 

146.0 1 119.4 119.4 146.1 3.3 3.2 

2 119.3 118.8 150.5 154.4 4.7 3.0 

3 120.0 120.0 145.9 143.1 3.6 3.5 

4 120.0 124.6 141 149.0 16.0 9.4 

5 119.6 128 149.2 126.3 5.2 12.4 

 

The simulation results show, 1) the phenomena that the material of 

Sichuan-Yunnan and its adjacent areas flows clockwise around Himalaya’s 

east tectonic node is related to the special boundary condition, and the stress 

field （seismic mechanism）in middle and upper crust is also related to the 

special boundary condition; 2) when we changed the lower crust from 

elastic material to viscoelastic material, the stress field of different crustal 

layers decoupling come forth in the Central Yunnan block and its neighbor 

area （100.9°-103.4°E，22.9°-27.6°N）, but this phenomena can not be 

found in other areas (table.2, some are alike fig.6).  

Conclusions 

The mechanism of tectonic earthquake formation is an important issue 

in seismology. And the conclusion may be drawn as that the markedly 

heterogeneous of the crustal structure and medium may cause the stress 

concentration and strain accumulated which may be the places of large 

earthquakes occurrence (epicenter areas). The seismogenic process is the 

result of reciprocity between the crustal movement of circumjacent regions 

and inelastic deformation of epicenter areas, under the control of regional 
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tectonic stress field. And it is the result and representation of the crustal 

movement.  

With the upwards systemic studies, we can get a whole cognition as 

that, the most important dynamic environment of seismogenic progress in 

Sichuan-Yunnan and its adjacent regions is the lithosphere asymmetry at the 

structure, physical characteristics, dynamical operation, and so on, 

especially the flow trait of lower crust and the drag force of upper mantle 

acting on the crust. 
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