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    Abstract: In accordance with the advantages and disadvantages of the existed probabilistic 
models for earthquake occurrence and the fundamental principle of earthquake estimation, five 
types of inhomogeneous compound Poisson Probabilistic models for earthquake occurrence are 
developed. The essential characteristics and possibly applicable hypothesis of these models are 
explained. The analytical results of the compound Poison models based on North China 
earthquake data indicate ‘that inhomogeneous compound Poison models may effectively estimate 
the non-steady process for earthquake occurrence, but, homogenous Poisson models may not do it.  
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0. Introduction  

Probabilistic model for earthquake occurrence (EO) is always an important fundamental 
research object in seismic probabilistic prediction (Lu Yuanzhong etc., 1985), engineering seismic 
hazard analysis (Gong Ping etc., 1997), and seismic loss estimation (Molchan G M etc., 1970). In 
the past decades, dozens of models for EO were developed from different perspectives, e.g. the 
uniform Poisson model (Cornell C. A., 1968), segmenting Poisson model (Hu Yuxian, 1990), 
time-predictable model (Anagnos T etc., 1984), renewal model (Wang F, 1987), two state model 
(Wang S B etc., 1993), clustering model (Kagan Y Y, 1973), interaction model (Cornell C A etc., 
1993), hybrid recurrence model (Wu S C etc., 1995). However, these models can be divided into 
two types by analytical perspective for stochastic process: 
     ①To think over counting features of earthquake event series, e.g. segmenting Poisson 
model； 
     ②To think over time features of earthquake, then to change to discuss counting features of 
earthquake event series, e.g. time-predictable model.  
     Fundamental mathematical ideas, hypothesis and application process of all these models 
have both advantages and disadvantages (Gong P etc., 1997). 
     While doing engineering seismic design, probability prediction and loss estimation, it is 
appropriate to discuss the models of probabilistic expression directly from interval feature of 
stochastic process for engineering anti-seismic design. Interval feature can be reflected by many 
stochastic process methods, and Poisson process is the most common and extensive used 
stochastic process. Aperiodicity demonstrated by homogeneity of the uniform Poisson model and 
segmenting model, cannot efficiently estimate seismic hazard even, say nothing of accuracy of 
prediction. Then the practive work probably suffers a giant uncertainness, as inhomogeneous 
phenomena of EO cannot be simulated including elastic rebound theory, accumulation of stress, 
liberation process, active and dormant period of seismic activity. If the trend of seismic activity 
can be predicted approximately in a definite time now and future with respect to the abundant 



seismic data and high level of research, seismic hazard analysis for engineering site are expected 
to these seismic trend estimation. According to the above circumstances, inhomogeneous 
compound Poisson probabilistic models for EO which can reflect inhomogeneity of EO are put 
forward with respect to perspective of interval (counting) feature for stochastic process, and the 
present paper will compare and analyze homogeneity and inhomogeneity of earthquake in North 
China. 
 
1. Building of inhomogeneous compound Poisson probabilistic models for EO 
     In the uniform Poisson model and segment Poisson model, the intensity function is 
considered non-related to time, discussing to the probability of magnitude Pm and the average 
frequency of EO  is separated. Set counting number {Nν t; t>=t0} is a independent stochastic 
variable which is independent with magnitude {mi;i=1,2,…} and occurrence occasion 
{Oi;i=1,2,…} .the counting process of EO is the compound of two stochastic process namely 
magnitude and EO occasion. This kind of compound Poisson process is not only reflect feature of 
seismic activity briefly, but simplify the calculation as well. In order to keep perspective 
continuity with the uniform Poisson model and segment Poisson model, in this EO model intensity 
function have been no longer homogeneity, and the orderliness assumption is eliminated 
conditionally， while keeps other prerequisite. So the first type of inhomogeneous compound 
Poisson probabilistic models for EO is satisfied to Poisson distribution, and its intensity function 
is 

         ν•=ν•<≤=λ μ m0t P)t()t,t|mxm(P                (1) 

where v is EO rate with magnitude of (m0, mμ] occurring in time interval of (t0, t], Pm is EO 
probability with magnitude of (m, mμ] occurring in time interval of (t0, t], m0 and mμ separately are 
lower limit and upper limit of magnitude in the study district, m is consider to lower limit of 

magnitude. In theory  is not expected to be continuous and differentiable, and the 

non-negativity of intensity function 

tλ

tλ  is assured by the non-negativity of Pm and v.  

      If a definite restrain is taken on the conditions for mutual independence of model (1), EO 
probability of the next seismic magnitude Pm is expected to be related to magnitude of the last 
earthquake m’, so P (m≤x≤mμ | t0, t) in (1) is changed to (2) 

                            (2) )t,t,m|mxm(P 0
'

μ<≤

     And it is called the second type of inhomogeneous compound Poisson probabilistic models 
for EO. This kind of condition restrain can simulate certain EO process appropriately, and reflects 
certain seismic phenomena. For example, possibility of a big earthquake after another big 
earthquake in a short time is low, while possibility of a big earthquake after a small earthquake in 
a short time is existent. 
      The third type of inhomogeneous compound Poisson probabilistic models for EO is that 

 is changed to (3) )t,t|mxm(P 0μ<≤

                      )t,t,t,'m|mxm(P 0Δ<≤ μ              (3) 



where m′ is given magnitude, ∆t is elapsed time. (3) is used to demonstrate EO probability with 
magnitude of (m, mμ] occurring in time interval of (t0, t]. This kind of condition loosening is 
convenient for simulating seismic phenomena from perspective of physical mechanism.  
     The features of the forth type of inhomogeneous compound Poisson probabilistic models for 
EO is that EO in future is related to the past k earthquakes. Set Np earthquakes have been occurred 
in the past t0, and the magnitude and the occurrence occasion are separately mi, Oi, i=1, 2…Np. 
The magnitude and the occasion in future earthquakes are related to the past k (1≤k≤Np) 
earthquakes, and also obey to inhomogeneous compound Poisson process, so the intensity 
function is similar to (1), just changing P (m ≤x<mμ | t0, t) to (4) 

     ])t,t(,t,o,m,...,o,m,o,m|mxm(P 0kiki1i1iii Δ<≤ −−−−μ              (4) 

Where Δt is elapsed time. 
     Generally time series and magnitude series of aforementioned 4 models are compounded 
mutual independent. If loosing the condition of independent compound, the general formula of 
inhomogeneous compound Poisson probabilistic models for EO can be put forward, its intensity 
function is (5) 

                                   (5) ),P( mtt νλ=λ

Where Pm and  are general function meaning included by 4 types of inhomogeneous compound 
Poisson probabilistic models for EO mentioned above. Thus, they are related to magnitude, 
occurrence occasion and elapsed time of past i earthquakes etc. It is called the fifth type of 
inhomogeneous compound Poisson probabilistic models for EO. When magnitude is independent 
with time series, the four types of inhomogeneous compound Poisson probabilistic models for EO 
above can be deduced from the fifth. So these four models is the special case of the fifth.  

ν

     In theory, the general formula (5) can reflect the magnitude and time series of earthquake 
series accurately and also fully simulate knowing seismic phenomena and mechanism. But it is 
hardly possible to accurately define the explicit expression of intensity function for earthquake 
series in certain region just by earthquake events data. Only some assumptions are given, can the 
explicit expression of intensity function be expressed. For example, assuming earthquake series 
are independent with time series, then, the common compound Poisson process can be formed. In 
this model, a basic assumption is existence of the intensity function. Conditions about orderliness 
and without aftereffect can be eliminated. Also the zero counting probability equaling to 1 can be 
eliminated. That means the zero counting probability can be not equal to 1. 
     Because of (5) cannot objectively reflect the known explicit expressions in particular 
analysis, parameter estimation has a high requirement to events data, calculation may be 
complicated, or researcher cannot give out an objective explicit expression, say nothing of the 
efficient estimation to parameters. This article put forward these models just from recognition of 
completeness of mathematical expression and physical mechanism of seismogenic tectonic system. 
Although in the first type of inhomogeneous compound Poisson probabilistic models for EO, the 
assumption that magnitude series are independent with event point process is contrary to our 
recognition that they are related, this assumption can simplify the calculation. In addition, thinking 
from mathematical statistics, this type of model with mutual independence assumption need less 
earthquake events data than other compound models. So this type of model has an extensive use in 
engineering earthquake, seismic probabilistic prediction and loss estimation analysis. If changing 



the intensity function to homogeneous, this model will change to the uniform Poisson model and 
segmented Poisson model. According to inheritability and rebirthability of scientific developing 
laws, the present paper will utilize a numerical calculation example to demonstrate the first type of 
Poisson model.  
 
2. Numerical calculation 
    There have been many studies in seismic zoning, the effect of integrality of seismic data to 
estimation and research of integrality compensative method, value b, reasonability estimation to 
seismic parameters such as EO rate and seismic activity period etc. In order to reflect and give 
prominence to the different feature of homogeneity and inhomogeneity in probabilistic model for 
EO mentioned in this paper, a easier estimation method is applied in data processing. It is easier to 
demonstrate and analyze. Considering the selected data should be completive in district, time and 
magnitude, and also for the significance of data index, the researching region should not be too big. 
According to the above, we take the seismic list with magnitude m0≥4.7 in region 115°~120° E, 
39°~41° N. The completive record can be traced back to very early. Seismic activities are 
considered to be period or quasi-period. Although different researchers have different recognition, 
so there is different in the division of period, most of them agree that a seismic activity period can 
divide into active period and dormant period (Lu Y etc., 1985). There have been 4 seismic period 
since earthquakes were recorded in North China area (Gao W etc., 1990). And there are two 
periods which have a completive seismic record since 15th century. 

   The third seismic activity period  
⎩
⎨
⎧

)1730~1484(period.active.seismic
)1483~1369(period.quiet.seismic

   The forth seismic activity period  
⎩
⎨
⎧

......)~1814(period.active.seismic
)1813~1731(period.quiet.seismic

 
    Although there are some earthquake absences in the early record, we assume that the seismic 
series from 1369 to 1992 which m0≥4.7 is completive, and in this area the moderate-strong 
seismic series from 1369 EO time process coincide with the division of the third and the forth 
seismic activity period in Reference [Gao Weiming, 1990]. The seismic series in fig. 1 
demonstrate non-uniforming of EO time process, and it directly reflect inhomogeneous feature of 
EO. Something must be pointed out that this paper is just discussing the statistical features and 
stochastic process of the seismic data, it doesn’t include the methods to obtain the seismic data 
and its accuracy. 

 
fig. 1  M-T graph during the period 1350 to 1992(M≥4.7) 



 
    The recognition of choosing aftershocks has not been coincident, because in mathematics, a 
Poisson process adds another Poisson process is still a Poisson process. But on another hand, a 
Poisson process minus a Poisson process may not be a Poisson process. In statistics, counting 
aftershocks will affect magnitude-frequency relation in small earthquake but the effect is little in 
large earthquake, and in fact, people care more about the effect of large earthquake. So this paper 
just demonstrates to analyze, and no choice will be made on the selected seismic series. 
    The EO probability which exceeds a certain magnitude in certain region can be determined 
by data, and there will be many expressions. Although inhomogeneous compound Poisson 
probabilistic models for EO can reflect non-uniform phenomena, it is difficult to describe its 
inhomogeneous intensity function efficiently. In statistics, we can assume that in the region the EO 
feature in dormant period and active period can be described by homogeneous compound Poisson 
probabilistic models for EO, namely homogenizing by time-segmenting simulate the 
inhomogeneous process of earthquake. 
      In practical earthquake prediction, estimating the EO probability of certain magnitude is 
often base on obeying G-R relation. The G-R relation of earthquake frequency can be expressed as 
(6).  
        lgN=a-bm          (6) 
      Where a, b are estimative parameters, m is magnitude, N is accumulation number of 
earthquakes. Tab.1 demonstrate the value of a, b in (6) from seismic data in different period in this 
region. Annual EO rate(ν) in different magnitude grade related to parameter a, b in different 
period is demonstrated in Tab.2. And the rate in different period is different. 
 
Tab.1    the value of a, b in (6) from seismic data in different period in the region . 

   time  earthquake earthquake    a        b       Nlgσ        Nσ       R 

          number  interval                                            
1369—1484    4    0.3      10.0343   2.00687   0.52139   0.38E-6    0.816 
1484—1730   37    0.3       4.26548  0.58267   0.63064   1.88613    0.919 
1484—1730   37    0.5       4.01331  0.53385   0.65165   2.50838    0.884 
1369—1730   41    0.3       4.32520  0.59141   0.63975   2.49247    0.919 
1369—1730   41    0.5       4.07891  0.54340   0.66278   3.49239    0.885 
1731—1814    5    0.3       6.29073  1.16495   0.52098   2.50838    0.670 
1731—1814    5    0.5       2.78435  0.448~9   0.60861   0.28E-6    0.257 
1815—1992  217    0.3       5.70707  0.77581   0.85011  34.5774     0.908 
1815—1992  217    0.5       5.71684  0.76339   0.93088  33.8004     0.885 
1731—1992  222    0.3       5.74060  0.78065   0.85571  35.5996     0.907 
1731—1992  222    0.5       5.75393  0.76864   0.93715  34.2858     0.885 
1369—1922  263    0.3       5.59572  0.72182   0.81550  35.2829     0.880 
1369—1992  263    0.5       5.52955  0.69924   0.90586  36.4762     0.832 

    Note:  is the variance of lgN; Nlgσ Nσ  is the variance of N; R is correlation coefficient. 

 
The probabilistic density function when earthquake m occurs from (6) is  
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Where β=b㏑ 10. The probability of EO in given magnitude of [m1, m2] (m0≤m1≤m2≤mμ) is . 
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        When m0≤m1≤m2≤mμ                               
 
  The probabilistic intensity rate and its intensity function in segmented period can be calculated 
from (7) and (8). 
 
   Tab.2. EO rate(ν) in different magnitude interval and different period in the region . 
   time   [4.7,8.0]  [4.7,5.2)  [5.2,5.7)  [5.7,6.2)  [6.2,6.7)  [6.7,7.2)  [7.2,7.7)  [7.7，8.0]

1369-1483  0 03418  0 03478  0 00000  0 00000  0 00000  0 00000  0 00000  0 00000 
1484-1730  0 14979  0 00311  0 02024  0 01214  0 01214  0 00809  0 00000  0 00404 
1369-1730  0.11325  0.07458  0.01381  0 08187  0.08287  0.00551  0.00000  0 00276 
1731-1814  0 05952  0 02380  0.03571  0 00000  0.00000  0.00000  0.00000  0.00000 
1815-1992  1.21910  0.89325  0.23033  0.06179  0 01685  0.00561  0.00561  0.00561 
1731-1992  0.84732  0.61450  0.16793  0.04198  0.01145  0.00381  0.00381  0.00381 
1309-1992  0.42147  0.30128  0.07852  0.02243  0.00961  0.00480  0.00160  0.00320 

 
    In seismic hazard analysis and seismic prediction analysis, not only the parameters above 
should be estimated, but also the number of earthquake in certain magnitude and in a certain 
period should be estimated. In fact, seismic activity intensity in certain period may change with 
time. For example, when analyzing the trend of seismic activity in North China, Gao 
Weiming(1990) conjectured future and believed that “The peak of this active period has passed, 
but this active period still remains 40 to 50 years. And this period may end in 1994 and the last 
end of the period may end until 2030.” It is appropriate to infer the result by inhomogeneous 
compound Poisson probabilistic models for EO. This paper simulates counting feature in certain 
magnitude and in different period for comparison. Now we use values in tab.1 and tab.2 to induce 
its intensity function. 

   When 21210 ttt,mmmm ≤<≤≤≤ μ , set the general expression of time- homogeneous 

intensity function λ in period of (t1,t2] and magnitude of (m1,m2],and b=b(t) ,v=v(t), then is  
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    According to (9), intensity function is related to v,b, , , , , , , 

. Three kinds of intensity function can be formed from tab.1 and tab.2. 
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     Form 1. The parameters of intensity function are that: during 1484~1730, take m0=4.7, 
mμ=8.0, v=0.14979, b=0.53385, during 1731~1814, take m0=4.7, mμ=5.6, v=0.05923, b=1.16495, 
during 1815~1992, take m0=4.7, mμ=8.0, v=1.21910, b=0.77581. So when magnitude is in (m1,m2] 
intensity function is. 

           (10) 
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    Form 2. At period of 1369~1992: the parameters of intensity function are that: during 
1369~1730, take m0=4.7, mμ=8.0, v=0.11325, b=0.59141, during 1731~1992, take m0=4.7, 
mμ=8.0, v=0.84732, b=0.78065. So when magnitude is satisfied to m0≤m1≤m2≤8.0 the 
time-segmenting homogeneous intensity function is  

         (11) 
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     Form 3. At period of 1369~1992: the parameters of intensity function are that: take m0=4.7, 
mμ=8.0, v=0.42147, b=0.72182, so when magnitude is satisfied to m0≤m1≤m2≤8.0 the time- 
segmenting homogeneous intensity function is 

     )]m66205.1exp()m66205.1[exp(0149.1045 21 −−−=λ     (12) 

     According to (10) to (12), we can conclude that intensity function has features below: ①
while ∆m=m2-m1 increases ,λt also increases, ②the intensity function is with subjectivity, and this 
subjectivity demonstrates for period division and certainty of seismic activity parameters in 
different period. And the estimation to the future seismic activity parameters is also subjective. the 
efficient method to decrease this subjectivity is to fully understand seismic activity laws of 
research region. 
 
Tab.3   The intensity function λt in different magnitude and period. 
  Time    [4.7,8.0] [5.2,8.0]  [5.7,8.0]  [6.2,8.0]  [6.7,8.0] [7.2,8.0]  [7.7,8.0] [7.9,8.0] note 
1815-1992  1.21910  0.49705  0.20148  0.08048  0.03096  0.01058  0.00238  0.00065 # 
1731-1814  0.05923  0.01l19                                                    # 
1484-1730  0.14979  0.07980  0.04194  0.02147  0.01040  0.0044l  0.00117  0.00034 # 
1731-1992  0.84732  0.34358  0.13852  0.05505  0.02107  0.00724  0.0016l  0.00044 * 
1369-1730  0.11325  0.05669  0.02806  0.01357  0.00623  0.00252  0.00064  0.00018* 
1369-1992  0.42147  0.18260  0.07855  0.03322  0.01348  0.00488  0.0013  0.00031 $ 
Note: # from (10), * from (11), $ from (12); 
 
     In seismic prediction or seismic hazard analysis, the probability of exceeding certain 
magnitude (m′) is often needed, in fact it is the probability of m′≤m≤mμ. According to (10) to (12), 



tab.3 presents the intensity function λt related to magnitude of [4.7,8.0], [5.2,8.0], [6.2,8.0], 
[6.7,8.0], [7.2,8.0], [7,8.0], [7.9,8.0] in different period.  
 

Tab.4. The probability of exceedance per year about tλ  with different time interval. 

  time     m≥4.7  m≥5.2   m≥5.7   m≥6.2  m≥6.7  m≥7.2  m≥7.7  m≥7.9 note
1815-1992  0.70450  0.39167  0.18248  0.07732  0.03048  0.01062  0.00237  0.00065 # 
1731-1814  0.05778  0.01112                                                   # 
1484-1730  0.13911  0.07669  0.04107  0.02124  0.01034  0.00440  0.00116  0.00033# 
1731-1992  0.57143  0.29077  0.12935  0.05356  0.02084  0.00721  0.00160  0.00043* 
1360-]730  0.10707  0.05511  0.02766  0.01347  0.00621  0.00251  0.00063  0.00017* 
1369-1992  0.34391  0.16689  0.07554  0.03267  0.01338  0.00486  0.00112  0.00030$s 
Note: the meaning of signs #,*,$ is the same with tab.3 
 
Tab.5  The probability of exceedance in future 50 years for different seismic parameter with 
different time interval. 
  Time    m≥47  m≥5.2   m≥5.7  m≥6.2   m≥6.7   m≥7.2  m≥7.7  m≥7.9note
1815-1992  0.99999  0.99999  0.99996  0.98212  0.78733  0.41371  0.11219  0.03198 a 
1790-1839  0.99999  0.99999  0.99351  0.86628  0.53884  0.23433  0.05776  0.01612 b 
1731-1814  0.94826  0.42851                                                    c
1706-1755  0.99462  0.89718  0.64954  0.41535  0.22895  0.10439  0.02883  0.00846 d 
1484-1730  0.99944  0.98150  0.87717  0.65819  0.40548  0.19788  0.05682  0.01686 e 
1731-1992  0.99999  0.99999  0.99902  0.93623  0.65128  0.30372  0.07735  0.02176 f 
1706-L755  0.99999  0.99995  0.98446  0.82013  0.49465  0.21651  0.05469  0.01538 g 
1369-1730  0.99653  0.94125  0.75414  0.49262  0.26765  0.11838  0.03149  0.00896 h 
1369-1992  0.99999  0.99989  0.98031  0.81005  0.49033  0.21651  0.05493  0.01538 i 
Note: a, b, c, d, e are respectively from (10), f, g, h are respectively from (11), i is from (12). 
 
     According to values in tab.3, we can conclude that the difference in division to seismic 
activity in 1369~1992 leads to the difference of intensity function value. Clearly, the intensity 
function value which regards  as homogeneous in 1369~1992 is lower than that which regard as 
active period in 1369~1992. It demonstrates that homogeneous intensity function cannot 
objectively reflect the feature of seismic active period and dormant period, but inhomogeneous 
intensity function can. 

     According to tab.3, the probability that at least 1 earthquake ( ) occurred in the 

relevant magnitude and in the year of (t
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     The results calculated by different period are demonstrated in tab.4,tab.5 and fig 2. 
     According to tab.4, the probability of EO of time-segmenting homogeneous and the 
whole-time homogeneous are different. Time-segmenting can reflect the feature that the 
probability of EO changes with time, but the whole-time cannot. According to tab.5 and fig.2, 



when value b and v change in predicted period, such as curves b, d, g in Fig.2, the predicted 
probability of EO is different with the probability in a,c,e,f,h,i, and it reflects the feature of 
inhomogeneous intensity function.  

 
       Fig.2  The probability of exceedance in future 50 years for different seismic parameter. 
 
3. Conclusion 
    (1) Under the case of the same original error and uncertainty, discussing probability of EO 
from interval feature of stochastic process directly is better than discussing seismic activity 
indirectly. 
    (2) The first type of inhomogeneous compound Poisson probabilistic models for EO maybe 
contrary to the physical mechanism analysis related to magnitude and occurrence occasion. But it 
is easy to calculate, and it can simulate non-uniform phenomena in EO, and the uniform Poisson 
model, segmenting Poisson model can be taken as its special case. 
    (3) Inhomogeneous compound Poisson probabilistic models for EO are better than 
homogeneous compound Poisson probabilistic models for EO because the former can simulate the 
non-uniform process in EO while the latter cannot. 
    (4) No matter inhomogeneous compound Poisson probabilistic models for EO or 
homogeneous compound Poisson probabilistic models for EO, the efficient estimation to 
parameters is very important in prediction, and it can directly affect the reliability of the result. 
The efficient estimation of seismic activity parameters is related to the level of the recognition to 
seismic activity feature in relevant region, extrapolating principles and estimation counting 
methods. 
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