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ABSTRACT :

Time-stepping methods and/or direct evaluation of Duli@miategral are being increasingly used
earthquake engineering to solve the equations ¢dbmdor discrete and continuous systems taffordabl

computational costs, applicability to linear andhtioear oscillators and permanent growth of theldvaiate
base of earthquake acelerogramas. Yet, when applyiea above methods, one must be aware th

integration schemes, regardiesf their stability and convergence charactesstict as digital recursive filte
that distort unevenly the frequency content of itifut, and this may result in a misleading responsene
system. Furthermore, in practice, the initial ctiods fa the computation of the response, in the casealbe
excitations that have lost the initial portion obtion, are unknown and assumed to be zero for leaion
purposes. This assumption, rigorously speakingority valid for high-frequency systemge.g., rigic
structures), and leads to unconservative design®mg-period systems if the initial condition effects s
properly taken into account.

In this paper a rational criterion is presentedrdok the accuracy of various commonly used iratgr
procedures for the dynamics of soil and/or stradtgystems. A few emples are shown to compare

performance of the methods and their sensititatyhe factors controlling the integration errogmely, th
amplitude of the time step, the iation of the motion values between sampling poiatsd the dynam
properties of the vibrating system.

The above question is of primary interest for shofihtermediate period elastic systems, whichgreerned
by the transient phase of the seismic respoRselong period systems, which are governed mdiyiythe
freevibration part of the response, the study cleanlyvgs large magnifications of the computed “nonings

response spectra with respect to the conventiaediiations.

Time-integration algorithms, linear oscillators, tramsfiinctions, initial condition

KEYWORDS: ;
response spectra, long-period systems.

1. INTRODUCTION

The direct dynamic analysis of the seismic respafssoil and structural systems has become a std
methodof analysis in recent years, side by side withatieances in the computational tools and the rerbéa
increase in the stronmotion data base at worldwide level. Similarly, thecessing techniques and

analysis of seismic records have experienmedound changes in the last two decades, withptiogressiv
substitution of the old analog records by the négital ones. Both matters of problems hamecommon th
essential need to minimize the integration ernorthe determination of the correalues of the ground moti
and/or the system response to the seismic action.

Numerical integration in the time domain requiressblve a number of questions related to the ga
convergence and accuracy of the integration methbd. choice of the optimal algorithfor evaluating

particular response quantity is not an e&@sk, and frequently a trial and error procedaradopted, reduci
the integration interval until an adequate degreacturacy is achieved. This research focusesow tc
evaluate rigorously the performance of any timedmation scheme, on the basfscomparing the transf
functions of the algorithm, for a given kinematiagnitude, with the ones corresponding to the igigagrato
(computed exactly). This methodologgrmits to know in advance which regions of tleecdss of the motic
will be wrongly enhanced by numerical integrationlfr affected by processing noise.
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Another aspect of the investigation concerns tifigence of initial motions on the spectral respe of lon
period systems. Non-zero initial motions may aviden the systems is already moving whesemsmic evel
occurs or from evaluation of the earthquake resperi'en a segment at the beginning of the impciord is nc
available. The latter siition is typical of optical accelerograms, sincenall portion of the accelerogran
always lost due to the fact that the response efrtstrument below the prefixed level of sensigivdiannot b
recorded.

In conventional response spectrum compate] the initial conditions are ignored and thelysis is carrie
out assuming that the system is initially at réisait is, assuming zero initial conditions. Thisuasption is
generally valid for rigid and intermediate systerfts, which the free vikation part of the response is
predominant and “at rest initial conditions” caa keasonably justified. Here is, however, a paucity
information on the consequences of ignoring theatsf of initial conditions on the spectral analysidonc
period systems, which are not well understood Me¢. present research is responsive to this need.

2. ACCURACY OF QUADRATURE RULES APPLIED TO OSCILLAT ORY FUNCTIONS

Generally speaking, time integration algorithms ramthing else but linear combinations bétnumerical da
(base points,;,tand function to be integrated, Xt derived from polynomial approximations of then€tior
X(t;), either for equidistant points (Newton-Cotes med) or for points located at newgual time interva
(Gaussian quadnare methods). In this paper, we restrict the aigalyo four well known integration method:
the first category, namely the trapezoidal, Simfsonectangle and migeint rules, which are sho\
schematically in Fig. 1.

T X(t) - ;;; !; .!' T

g (i
a)

a. b
c)

Figure 1.- Quadrature rules: a) rectangle; b) zajal; ¢) Simpson’s; d) mid-point

The mathematical formulation of these four methisdsdicated in Table 2.1:

Table 2.1
Trapezoidal rule Simpson’s rule
h h
yn+1 = yn +E(Xn + Xn+1); n= 0112! (21) yn+1 = yn—l +§(Xn—l +4Xn + Xn+1); n= 1’2!3' (22)
Rectangle rule Mid-point rule
Yo = Y, +hx,; n=012,... (2.3)| Vo1 =Y, +hX ;00 Nn=012,... (2.4)
where h=t, -t (j>i),and y(t)= j x(t)dt (2.5)

The integration schemes of Egs. 2.1 - 2.4 can beackerized as recursive digital filters of caugpke with
memory. Therefore, according to Hamming (1977)jrtdegree of accuracy for a given frequency ca
estimatedby computing the ratio between the transfer fuamctof the numerical (approximate) and
analytical (exact) temporal operators. To do soingat complex harmonic signaly’gis assumed. Sindbe

above equations are all linear, the output sigfiat stegration will be of the type Hg)e', where H(b) is the
complex transfer function of the integrator angs the angular frequency (Fig. 2).
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Figure 2.- Transfer functions of time integratiggeaators applied to a seismic acceleration record

Then, for the ideal integrator it is found
i W
H (iw)e™ = y(t) = [e“dt ==~ (2.6)

lw

H*(iw)=%}e‘i”’2:>‘H*(iw)‘=a%; qo*(iw):—g (2.7)

whereas for the quadrature rules, makikg=€“" and y, = H(iw)x_ in Egs. 2.1-2.4, the expressionks

Table 2.2 are derived (h=number of sampling poimtat=discretization time interval).

Table 2.2
Trapezoidal rule Simpson’s rule
. h . wh, -2 . h 2+cos@h) -7
H(iw) = —cot(—)e 2 28) | Hilw=-——--—"€72 2.9
(iw) 5 (2) (2.8) (i) 3 sinh) (2.9)
Rectangle rule Mid-point rule
I e e
H (| C()) ——ahe (2.10) H (| Cl)) = —Cuhe (2.12)
2@;in(7) ZBsin(7)

The moduli of the complex-variable functions 2.8.21,normalized with respect to that of the ideal ingegi
(Egn. 2.7), are represented in Fig. 3-a, and theesponding normalized phases angles are drawigir3#. In
both diagramsoy=n/h is the so-called circular Nyquist frequency, efhis the maximum frequency thezdn b

reachedf “aliasing” effects are to be avoided. From thepection of Fig. 3, the following observationg
made:

1) The rectangle, mid-point and Simpson’s fatae amplify the amplitude of the signals throughtin
whole frequency range (especially for harmonicsvabonehalf of Nyquist frequency), whereas
trapezoidal rule attenuates progressively all tagdencies in the interval (@y).

2) The rectangle rule (also called “simple summatiate™ is the only one that introduces
frequency-dependent phase shift in the integrgiroeess which leads to baseline drifts digdortion:
in the shape of the integrated signal (Fig. 3-mng&quently, the usef the rectangle rule is r
recommended for solving earthquake problems inrergging practice.

The practical implications of the abovehavioral patterns are quite evident. Consider,ekample, tr
simulated accelerogram proposed in the literatyrBdgdanoff et al (1961)

y(t) = Bte™ Zn: coswt+¢) (2.12)
j=1

with B=0.292 ando=-0.333;n is the number of harmonics with circular frequeseb; considered in tt
simulation, and®; are random numbers uniformly distributed betweean@ Z (Table 2.3).The artificial
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accelerogram (2.12) is analytically integrabletladl way up to the response spectra, thus permiticglibrate
very easilythe effectiveness and accuracy of several integrahethods currently employed in earthqt
engineering. Besides, by choosing adequately thenpteran ando; , the frequency content of the signal
be controlled at will.
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Figure 3.- Normalized transfer functions of quadratrules: a) amplitude values; b) phase angles

Table 2.3

(rag;jsec) 6.00 8.00 10.00] 11.1% 12.3p 13.25 14.05 16{20 17.3®.15| 22.00

@ (rad) | 3.7663| 1.3422 4.8253 0.2528 4.5204 1.8834 1.3320852.| 0.1517) 2.4881 1.7634

;
(rad/sec)
@ (rad) | 1.6632| 2.1862 0.8325 1.2387 2.3156 3.0012 1.064%848.| 1.5532 0.9586 2.3562

25.25 | 29.85| 3450 39.60 4645 53.00 58/60 66.75 157].74.80| 80.25

Thus, Figure 4-a depicts the simulated accelerogfarm= 22, and 6.00<w; < 80.25 rad/secOn the othe
hand, in Fig. 4-bn=5, and 58.60%; < 80.25 rad/sec. Integrating the accelerogramaf4bby means of tr
Simpson’s and trapezoidal rules, with h= 0.025(d€csample points per second), gives the diagrdnisgs
5-b and 5-c, while the exact velocigram is repressgtin Fig. 5-alt becomes obvious how the trapezoidal
truncates the high frequency peaks of the intedrsignal whereas the Simpson’s rule magnifies tipesks
an undesirable and deleterious effect if spuriaisendue to poor processing of the signal is texpected.
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Figure 4.-Simulated accelerograms (Bogdanoff et@,1): a) standard; b) enriched in high frequencie
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a) Analytical integration

b) Simpson's rule
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Figure 5.- Analytical a) vs. numerical integratjby and c¢)] of the accelerogram shown in Fig. 4-b

As concerns the pbka shift introduced by the rectangle rule, the egtachange of frequency of the integri
record associated to that shift translatee computational errors in engineering applmasi. As an examp
Fig. 6 illustrates the results found applying thleding block method (Newmark, 1965) to estimate
permanent seismic displacement of a gravity wdljestied to a single sine wave pulse of acceleration
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Figure 6.- Permanent seismic displacement of atgrasall subjected to one cycle of harmonic accatien;
a) calculation procedure; b) numerical estimatésgudifferent quadrature rules.

3. ACCURACY OF NUMERICAL SEISMIC RESPONSE OF LINEAR SYSTEMS

3.1. Single-degree-of-freedom systems

The evaluation of the seismic response of a sidglgree-of-freedom (S.D.O.F.) systenbjected to an inp
base accelerationy(t) , requires to solve the classical second-ordenarglidifferential equation
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U+ 28U+ p2u = —y(t) (3.13)

where p=2/T, is the natural frequency of the oscillatgrjs the damping ratio, andi, u,U stand for th
relative displacement, relative velocity, and rielaacceleration of the vibrating system.

Then, the dynamic response of the S.D.O.F. systenibe written as:
u(t) = u, () +u, (1) (3.14)

u and u represent, respectively, the forced and free tidmaphases of the motion, given by the relations
(Veletsos and Ventura, 1985):

u,(t) = —Jt' y(O)h(t —7r)dr (3.15)
u (t) =U, (t) +U, Oh(t) (3.16)

and g(t) and h(t) are the so-called unit-responsetions of the system

_ & _
g(t) =| cos(p,t) + Wsm(pdt) g™ (3.17-a)
h(t) = pie‘fpt sin(p,t) (3.17-b)
d

In Egs. 3.16 and 3.17p, = p 1-&% , and UO,U'0 are, respectivelythe initial displacement and the ini

velocity of the system. For an oscillator initialllat rest”, U, =U'0 =0, and u(tFu(t). Under thes
conditions, two possible methods have been propiosee literature for solving Eqn. 3.13 in the éiomain:

» Direct integration of the differential equation X3), by numerical calculation of the salec
convolution integral or Duhamel’s integral

u ) = —ij §(r)e® sin[p, (t - 1)]dr (3.18)

do

»  Step-by-step integration of Eqn 3.13, following atricial marching scheme of the type

un+]_ un Yn
{. }=A(p,f){. }+B(p,<‘){.. } (3.19)
un+l un yn+1

In both cases, the accuracy analysis is basedeirtdimparison between the numerical transfer funstd
uand uand the corresponding values for the exact integratf Eqn. 3.13. It must be remarkéduat thit
procedure differs substantially from the classieaior analysis based on the amplitude decay and ¢
elongation of the free response of the undampetersyso an initial displacement (Humar,199&uch a
analysis considers only the matrix A (which corgrible stability of the method), and does not take accouh
the forced terms of Eqgn. 3.19 (Preumont, 1982).
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3.1.1 Transfer functions

The transfer functions of a linear system are feeqy operators which characterize the ratio betwhe
kinematic responses of the system and the corregppexcitations in the frequency domain. The aacyof
these complex-variable functions depends largelthemumerical method used to calculate the regpairife
system, as it is shown next.

a) Exact transfer functions

y(t) =€“; ut) =H, (iw)e*; ut)=H,(iwe“ =iaH, (iwe*;
li(t) = —w’H, (iw)e'™, the following expressions for the stationary s are found

Substituting in Eqn. 3.13:

c 1

HU(Iw)_a)Z—pz—Zipr (3.20)
H (i) =iaH’ (i) (3.21)
H(iw) = -2&H; (iw) - p°H, (iw) (3.22)

where X(t) =U(t) + y(t) denotes the absolute acceleration of the osaillatbe moduli of the abo
functions are plotted in Fig. 7 for a short perastillator (T.= 0.1 sec.) with two different damping ratiofheT
phase diagrams of the same functions are showrigin8- It can be verified that increasing tlevel of
damping reduces significantly the peak response of thdla®r, but the overall behavior outside the baf
resonance is not affected too much.
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Figure 7.- Moduli of the exact transfer functiorishbort period oscillator (0.1 sec).
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Figure 8.- Phase diagrams of the exact transfetifums of short-period oscillator (0.1 sec.)
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b) Numerical transfer functions: Duhamel’s approach

In this method the numerical errors are due satetyre amplitude of the integration interval, hs@@medn this
work identical to the digitization intervalgnd/or the hypothesis made about the variatioth@fexcitatior
y(t) , between sampling points (Blazquez and Arcos, 4298 all cases the transfer functions will beiteu

to the uppermost value of the frequenayy, = 77/ h (Nyquist frequency) to prevent “aliasing phenontena

Then, for a resting system, substituting in Eqh33§(7) = €“", and developing the integral, gives

s - -
u(t) = e_pt‘({mje'”ep& cos(p,7)dr +%(pdt)j e e sin(p, r)dr} (3.23)
a0 SR

d

u(t) = {e_mf [-H,(wt) Bin(p,t) + H, (iw,t) [tos(p, ,t)]}e“‘I =H,(iwt)e" (3.24)

The time-dependent complex functiong(ild,t) and H (iw,t) represent, for each integration rule, the tier
functions associated to the respective integrafge (er cosine) in Eqn. 3.23. These functions ewaluate
using the rule of integration by parts:

V= je“‘”dr =H(we"" (3.25)

where H(io) are the functions defined in Egn. 2.8 to 2.1teAsome mathematical manipulations, it results:

H, (iwt) = M{ep‘f[R [eos(pyt) + SLSIN( pyt)] - %} (3.26-a)
R°+S e
. -H( . . S
H,(iwt)= %{e”[smzos(pdt) - RISin(p,t)] _ei_“‘} (3.26-b)
where R=1+{pH(iw); S= p;H(iw) (3.27)

Substituting Egs. 3.26 in Egn. 3.24, yields:

1+ pH (iw)
Py H (iw)

H,(iwt) = H (i)

= 1-e (P9 cog(p,t) +
1+2£pH(ia))+p2H2(ia)){ ( bsH

sin(pdt)ﬂ (3.28)

A similar expression has been derived by Lin (1963)the stochastic respsm of a linear system to a wee
stationary random excitation, using a completelffjedént approach. Note that,fio,t) is a nonstationar
transfer function whose amplitude evolves with tiraecording to the transient nature of the seismeitor
(Fig. 9). As expected, whemt o the expression in brackets in Eqn 3{28ds to unity, meaning that
stationary vibration phase has been reached. Uthdese conditions, substituting for exampié(ic) by

H"(iw)in Eqn 3.28, the value of the exact transfer fumctf u(t) for the analytical integratiod,, (i) , is

obtained. This procedure applies to any integratibe used in conjunction with Egn 3.28. Figs. 18xa 10b
exemplify this methodology for the Duhamel-trapeabiand Duhamel-Simpson methods applied to 5#0o
damped oscillators with natural periods 0.1 and&Iscan be seen in the figure that the oppositpliication
trends of the two quadrature rules (Fig)3mark the behavior of the respective transfections outside tt
resonance band of the system.
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Figure 9.- Evolutionary transfer function a)

amplitudes of the relative displacement Figure 10.- Normalized displacement transfer florcti
of a 1 D.O.F. system at the transie  diagrams for a 5%-damped system: a) Duhamel-Simpson
(t < 7sec) and stationaryX¥sec) phases. rule, b) Duhamel-trapezoidal rule.

c) Numerical transfer functions: step-by-step intagratlgorithms

The way to proceed using this approach (Blazqued Ancos, 1999b)is to derive the functiol
H,(wh),H,(iw ), else solving the matricial Eqn. 3.19 as followmsr{umberof sampled input value
I=unity matrix)

u, =H,(w h)ei(mh; u, =H,(iw h)eianh (3.29)
H, (i h) — |aianhy _ -1 1
{Hu(i w, h)} - [e | — A p,f)] B( p,f){eimh} (3.30)

or directly,from the mathematical scheme which defines thgraten algorithm. For example, for the cer
difference method (explicit Newmayk-1/2; =0 method),

Upyy —2U, U,
h2

o1 o
Uy = o U =Upg)s Uy = (3.31)
substituting in Eqn. 3.31, written in discrete forthe quantities:u, =H,“"; u,_, =H e“"™"
Upg = Hueiw(nﬂ)h; y, = e“™ it results

1

H, (iwh) =
2-p°- Z(COS@h) +i fsin(ah)j

(3.32)

which is the seismic transfer functiof the method, strongly dependent on the amplitudéhe integratio
interval, h. Note that while Eqs 3.32 applies dolpteady-state conditionsthat is when the transient phas
the forced vibration response has vanished — E@8.i8 valid for theéransient and stationary phases, in :

of the fact that the latter is not always reachexing) seismic loading. Note also that, for the apens H ,anc
H, being applicable in practice, they must comply wiité consistency conditions

H,(0) =H,(0); H,()=iaH,(0) (3.33)

as well as with the standard requirements of stalaihd convergence of the method.
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In this research, the performance of fourteen tstepping methods haseen investigated, including th

Runge-Kutta methods 12 3° and 4" order), five Newmarky=1/2 methods{=0, B=1/4, B=1/6, B=1/8, an
B=1/12), three modified Newmark methods (HHT, WB& &H), and the Nigandennings, Wilso®=1.4 an
Houbolt methods. Fig. 11 shows the normalized fean$unctions of the displacement, w@eity anc
acceleration of short and long period damped @doils calculated using three of the above methuatsel
the Nigam-Jennings (N-J), Houbolt and central dd#fice methods. It is realized from the figure tinat NJ
method behaves smoothly dlughout the whole range of frequencies, deamplifiightly the response to hi

and low frequencies for all types of oscillators tBe contrary the other two methods show a streagnanc
peak for all kinematic responses, diverging sigatfitly from the exact ones in that zone. Furtheembig. 11
confirms that whereas the central difference method amplifi@sgérously the excitation frequencies hi
than the natural frequency, Houbolt's method filtdrose frequencies, which are not accurdtebgrated an
consequently, damped out in the response. This énical damping” effect is inherent to severatiegratior
methods (e.g. Wilsofi method) and acts similarly to modal truncation in thegfxency domain analysis

multi-degree-ofreedom systems, leading ultimately to attenuateetctsal ordinates in the high freque

region. Nevertheless, in practical computations,gtesence of numerical damping @meenient, since it hel

to maintain the stability of the conditionally skalintegration methods, by keeping the high modpaoase

multi-degree-of freedom systems out of the solution
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Fig 12 visualizes the normalized phase angleseN4, Houbolt and central difference methods. Attents
brought to the fact that Houbolt's method introdiieemarked distortion in the phase angles of thporese,

which become frequenayependent. This feature is undesirable and mayaexphe poor accuracy of tl
method in solving certain dynamical problems

3.1.1 Response spectrum analysis

As explained before, all the integration schemesn af they meet stability, convergence and constst
requirements, introduce numerical errors in thesra@ response of B.O.F. systems, which result
misleading response spectra. Fig. 13-b displaypead errors of the response relative to theygioal absolut
acceleration spectrum of the input record showrign 4-a. It can be seen that the accuracy errors orotieec
vibration phase affect basically to the low perjcaisd should nobe confused with the amplitude decay el
reported elsewhere (Humar, 1990) for the free titagphase, that affect basically to long periosgtesns It is
also observed that the Nigam-Jennings method and‘tbrder Runge<utta method (Heun’s method) prov
very similar results (Fig. 13-a). The N-J method ppaoved to be more accurate and less castigrms o

computing time than the®3order Runge-Kutta method thags the standard for response spectra calcul
prior to 1968.
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Figure 13.- a) Numerical vs. analytical absoluteeteration spectra of the artificial accelerogrdrfrig. 4a; b,
relative error of the numerical (approximate) spaotordinates with respect to the analytical (exaalues.

3.2. One-dimensional continuum systems

Continuum elastic systems have an infinite numbkerdegrees of freedom (infinite number of nat
frequencies) and therefore their seismic resposseonsiderable more complex and difficult to ok
analytically than that of discrete systems, evef-ih situations. To illustrate this point, considee theismi
response of the homogeneous elastic soil layer showrig. 13, which rests on a rigid rock base. ks
that the soil and bedrock extend infinitely in theeral direction, the relative horizontal displaemnt, w(t), al
any point in the sand layer has been reported tigsldnd Seed (1968) as

'z J.4,(B,2/H)

3.34
H 3,08 (3:39

0O ==Y Y, (X, 0=-3

n=1

[y(@)senie, (t - 1)ld7

- Y
=w , a)n:% is the circular natural frequepcof the nth mode of vibratio

v, =,/G/ p is the velocity of the shear waves propagatingicadly in the deposit, and,Q) is the Bess
function of first kind of ordeu.

were [3,
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Eqn. 3.34 has been applied to the surface (poirdf/A) 30m-thick soil layer, witp=1920 Kg/ni and variabl
shear modulus, G (Fig. 14-a), subjected to a haicramteleration (in gal) at the bedrock of the type

y(t) =300sen(27t) + a* sen(a [t) (3.35)

where the pair of values (@) represent the amplitude and circulegduency of a contaminating noise, ei
or low or high frequency (Fig. 1d). With these premises, the numerical relativersrarisen when computi
u(t) (Egn. 3.34) by means of the N-J and the Newnfis1/4 algorithms are displayed in Fig. ¢4for
different values of G. Two observations are madest,Fonly unconditionally stable methods can bec
reliably in the determination of,(t), since all other methods will not meet the Biigbrequirements for hig
values of n in Egn. 3.34, making thalculation to fail. Secondly, both methods damptba system respor
to the high frequency noise, in agreement with whkies of the parameter [Ho)/H *(iw)| in that. Thi
favorable effect is more dramatic for the Newm@#kt/4 method than for the N-J method.

MNewrmark =14 =172 MNigarm-Jennings
A ug(t) 10 T T 1 i i
l Elastic [ g ey o S =
z Soil o g™
g = o
- B L e pachaiae —
E e X 3
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1 e e e LT P e, s T -
,
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p=1920 Kg/n® T 5 2 4 @ % 2 4 8
77 777 T @ () w10 G ity w1t
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Figure 14.- Displacement response at top of unifetastic soil layer (a) to clean and notseytaminate
accelerograms (b). Computational error of numeneathods (c).

4. EFFECT OF SYSTEM INITIAL CONDITONS ON ELASTIC RE SPONSE SPECTRA
4.1. Theoretical background

Presently, elastic response spectplots are a standard design tool to charactenedrequency content of
earthquake rad its effects on structures. They are obtainedmaximizing the solution of the equation
motion of the S.D.O.F. system (Egn. 3.13) as weltle related magnitudes (relative velocity andlaibe
acceleration of the oscillator), in the followingmer:

where SD, SV, and SA represent, respectively, ithe telative displacement, relative velocity andahite
acceleration response spectra. If the damping mtiow(E—>0), a quasi-linear behavior of the system can b
assumed, and the true velocity and accelerationtrspean be substituted by the so-calledugsesspons
spectra, defined as
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%N=p&D=%?$D=S/ (4.37-a)
_ _ 2\’
PSA= p? 8D = T [BD = SA (4.37-b)

Eqgs. 4.37 are highly sensitive to the variationshef parameter§ and T (previously called ), specially fo
long-period systems. Fig 1¢onfirms that, for a oscillator initially at restjth a period much higher than
period of the excitation, PS/&SA for all periods, but PS¥SV only for intermediate periods. Fperiod:
greater than a certain critical value (Tx); the SV curve departs clearly from the PSV clwamd approach

its asymptotic value, the maximum velocity of theound, |y(t)|max. On the other hand, for the sc

conditions, PSV =2_|_—n[H) - 0, since SD approaches its limiting valu|ey(t)|max, while T increase

indefinitely (Hudson, 1979). Then, it is concludibét, for long period systems, velocity and pseuvelocity
response spectra are not exchangeable, even aasheof very low damping.

Even more importaris to recognize the effect of the initial systenmditions in both, true and pseudoresp:
spectra, for elastic long period systems, whoseirmaix response is very often attained after cessatidhe
excitation, during the first half-cycle of free vabion.

Undamped Systems

35

3

Normalized Spectral Values

i
!
3
Y

¢

1 2 3 4 5 6 7 8 9 10
Period (sec)
Figure 15.- True and pseudoresponse spectra feasiceleration pulse.

Using a single cycle sinusoidal acceleration wdvpeniod Ty as excitation of a system of period T, Blazc
and Kelly (1988) have shown (Fig. 16) that, forrsiperiod rigid systems @Ty), the free vibration compone

in Eqn. 3.14can be neglected and the effect of the initial doovs is negligible regardless of the damjy
level; thus it can be reasonably assumed that:

U,=u@0)=0; U,=u(0)=0 (4.38-a)

In contrast, for long period flexible systems>{t), the following asymptotic relations can be use
approximate initial conditions:

U, =u@)=-y,; U,=u0)=-y, (4.38h)

where y,and Yy, are, respectively, the input displacement andrtpet velocity at the initial time of motion.
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Figure 16.- Ratios of initial motions of a S.D.Oslystem to the initial motions of the ground forusoidal
acceleration wave (Blazquez and Kelly, 1988)

Since the standard method for calculating respspeetra assumes zero initial conditions, it is tated that,
strictly speaking, such a procedure applies onlgigh-frequency systems (e.g. rigid structureshwibnzerc
initial condtions. For other types of systems (particularixible ones), the effect of initial conditions dre
long period regions of response spectra remaibs warified.

4.2. Parametric study

To investigate the implications of considering eglecting the effects of the initial conditioimsthe respon:
spectrum analysis, a parametric study of the splexsponses of a viscously dampeD.S.F elastic syste

has been conducted. To this end, the peak grouwedesation, Y, the initial conditions,U, and U,, and th,
natural frequency of the system, p, are interrdlatethe dimensionless coefficients:

a:—pzéJY__O : ﬂ:—péJY—.O (4.39)

and the sensitivity of the response to various doattons ofo and 3 is evaluated for different types
excitations at the base of the system.

4.2.1 Snusoidal pulse acceleration

For a single cycle of excitation of the forri =Y sin(27t/T,), in which TOis the duration of the cycle, 1

normalized spectral displaceme®D/Y, spectral velocity,SV /Y , pseudo-spectral velocityPSV /Y, anc
absolute spectral acceleratiosa /Y , of undamped systems, have been calculated byukéeand Blazque
(1990, 1992), for different pairs of values wfandf. Fig. 17shows a sample of the computed results
function of the ratio T/TO. It can be seen thatltheken lines in Fig. 1@xhibit a linear trend for large values
T/TO in the case of the velocity spectra (SV an/RPand a parabolic spa in the case of the displacen
spectra (SD). The reason is that, for a harmonsepand fixed values of andp, Egs. 4.39 can be written

. 2

T
p T,

0

U, = _YB = —Yﬁ(lj (4.40-b)
P To

and therefore the initial motions of the systeidyand U, are much larger than the peak values of the

displacement,y , and base velocityy , respectively. Therefore, since the maximum respaf the trarient

part (y in Egs. 3.14 and 3.15) approachésit becomes clear that the response is dominagethd fre

vibration part (bin Egs. 3.14 and 3.16), as indicated in Fig.h7all cases the effect of damping is simpl

reduce the amplitude of motion of the responsdeklystem.
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4.2.2 Earthquake input acceleration

For more complex excitations, suchrasl or artificially generated seismic motions, #amne trends on t
variation of the response spectra are found, asdsrone of the valuesandp, at least,is different from zero.
As an example, the response spectra for the 1940eBtro earthquake record @l-component) with ai
without initial conditions are shown in Fig. ,18nd the spectra for the 1985 Mexico earthquakerded at th
SCT station (E-W component) are shown in Fig. T8e El Centro earthquake has been selected leed
producs significant responses over a wide band of sygieriods, while the Mexico earthquake prodi
significant responses for a narrow range of higfiops, mostly between 1.5 and 3 sec.

Fig. 18 and 19 evidence that the effect of init@hditions on the sponse of rigid systems is quite negligi
since they are more sensitive to the high frequeacyponents of the input motion than to the inisigte o
the system. On the contrary, the long period systam much more influenced by the initial coiotis on PS'
and SA tharany other type of systems. The SA spectra alsw shat the base shear for a long period sy
with nonzero initial conditions is larger than that for gstem initially at rest. This fact may lead
unconservative designs of long period structurésgfinitial conditions effects are not properlgaignted for.
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Figure 18.- Influence of initial displacemen) pn pseudo-velocity (PSV) and absolute accelard&#)
response spectra for elastic systems subjectedd@erfro 1940 earthquake, N-S component (Ventuda an
Blazquez, 2007)

4.3. Application to analog accelerograms

The results presented in the above sections afaliisasmuch as they provide the behavioral pattdrthe
initial conditions problem. However they are dificto link to the primary cause ofi(0) and/or u(0) being
nonzero, which is usually the lost initial parttbé analog accelerogrartisat leads to assuming arbitrarily 1
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the unknown motions at zero time (when the instmini triggered) areJ, = u(0) = 0; UO =u(0)=0.To

cope with this problem, the pretriggering event #oistrong motion record has been simulated herg
artificially cutting off a prefixed segment of thecord, §(corresponding to a trigger acceleratign so thathe
response spectra of the truncated and untrunaaped motions can be compared.
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Figure 19.- Influence of initial displacemen) pn pseudo-velocity (PSV) and absolute accelard&#)
response spectra for elastic systems subjecteckxichl 1985 earthquake, E-W component (Ventura and
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Figure 20.- Spectral behaviour of truncated andumctted analog accelerograms (Fig. 4xa,:=8.33)) for ¢
trigger acceleration: a)=0.10g ; b) &0.20g (instrument malfunction).

This procedure has been applied to an artificithgaake with analytically amenable response spgtiierec
permitting a direct comparison between the obseraed ideal measurements, with no numerical errors
whatsoever in the computational process. The esdilsuch a comparispffor the artificial accelerogram

Fig. 4-a, are given in Fig. 20, considering eitaeruntruncated (complete) record with, # Oand/or UO z0
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at t=f or a truncated (incomplete) record witt, =U, =0 at t=t. In the last casdJ,and U, are unknow

and therefore, in common practice, they are baghras to be zero in spectral calculations. @izgrams sho
in Fig. 20 point out, that, at the long period ranthe SA values are almost insensitive to thecttion of thi
accelerogram, whereas the SD values of the incaepéeords are consistently higher than thev@Des ¢
the complete reads. Moreover, for very high periods, the undamp&Y¥ spectrum of incomplete recc
tends asymptotically to the peak ground velocitstead to zero (Blazquez and Kelly, 1988; Pecknoid
Riddell, 1978; Fig. 21).
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Figure 21.- Asymptotic behaviour ofaamplete analog accelerograms at long periods (fétland Riddel
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4. CONCLUSIONS

1) Algorithms that amplify significantly the upper hahrt of the Nyquist interval are very sensitioelte
presence of spurious high frequency noise in seisiginals and should be avoided in dyne
response computations.

2) Phase shift in integration schemes distorts thguigacy content and the shape of the excitatioratggn
introducing unacceptable drift errors in the inttgd records.

3) The amplitude of théntegration interval is the main parameter cotitrglthe stability and accuracy
seismic response of linear systems: the smalleintbeval the greater the accuracy.

4) In general, numerical transfer functions of S.D.Gystems (especially short jmt systems) show
sharp peak at the resonance region of the oscillditeerging considerably from the shape of thect
transfer curves in that zone.

5) Time-dependent Duhamel’'s transfer functions apply to tia@sient and stationary phases of
evolutionary seismic motions, while for step4tgp methods only the transfer functions of
stationary phases are computed.

6) Integration methods that introduce numerical dagp@nthe response of the system filter out the
frequencies from the systesnresponse. The truncation effect is very smoottd aniform foi
Nigam-Jennings method whiatheamplifies lightly the whole range of frequencies all types ¢
oscillators.

7) For long period (flexible) systems, the effect afnrzero initial conditions inthe motion is
magnification of the spectral values, regardlesthefdamping level of the system. These value
dominated by the free vibration part of the respasfsthe system.
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8) For short to intermediate period systems (rigi@) above effect isugte negligible, since they are m
sensitive to the high frequency components ofipeti motion than to the initial state of the system

9) The base shear for a long period elastic systeim monzero initial conditions may be significar
larger than for a system initially at rest, leadiogn uncorervative design if this effect is not prope
accounted for.

10) Omitting initial conditions makes the pseudslocity spectrum to deviate from zero at very |
periods and asymptotically approach the initialodite velocity of the system.
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