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ABSTRACT: 
In this paper, a wavelet Galerkin finite element method is proposed by combing the wavelet analysis with 
traditional finite element method to analyze wave propagation phenomena in fluid-saturated porous medium. 
The scaling functions of Daubechies wavelets are considered as the interpolation basis functions to replace the 
polynomial functions, and then the wavelet element is constructed. In order to overcome the integral difficulty 
for lacking of the explicit expression for the Daubechies wavelets, a kind of characteristic function are 
introduced. The recursive expression of calculating the function value of Daubechies wavelets on the fraction 
nodes is deduced, and the rapid wavelet transform between the wavelet coefficient space and the wave field 
displacement space is constructed. The results of numerical simulation demonstrate the method is effective. 
KEYWORDS: Porous Medium; Wavelet Galerkin Finite Element Method; Daubechies Wavelet; Scaling 

Function; Rapid Wavelet Transform 

1. INTRODUCTION  

 
The fluid-saturated porous medium is modeled as a two-phase system consisting of a solid and a fluid phase. 
Compared with the single-phase medium theory, fluid-saturated porous medium theory can describe the 
formation underground more precisely and the fluid-saturated porous medium elastic wave equation can bring 
more lithology information than ever. For these reasons, fluid-saturated porous medium theory can be used 
widely in geophysics exploration and engineering surveying. 
In 1956, a theory was developed for the propagation of stress waves in a porous elastic solid containing 
compressible viscous fluid by Biot [1, 2]. After that, many researchers paid their attentions to the propagation 
characters of elastic wave in saturated porous medium and obtained many achievements [3, 4]. Most dynamic 
problems in fluid-saturated porous medium are solved using numerical methods, especially using finite element 
method. Yadkin [5] combined the finite element method with the boundary element method, constructed the 
finite-boundary element method to deal with the two-phase model in lateral extensive field and obtained better 
result. Shao xiumin [6] discussed the wave propagation in the saturated porous medium and developed a new 
kind of non-reflecting boundary conditions on the artificial boundaries. Zhao [7, 8] proposed an explicit finite 
element method for Biot dynamic formulation in fluid-saturated porous medium. For the problem of local high 
gradient, finite element method improves the calculation precision by employing the higher order polynomial or 
the denser mesh. However, the increment of polynomial order and mesh knots inevitably need more 
computational work. Meanwhile, the condition of numerical dissipation will limit the frequency range that can 
be obtained. To overcome the disadvantages, wavelet analysis is introduced to the finite element method in this 
paper. Its desirable advantages are the multi-resolution analysis property and various basis functions for 
structure analysis. According to different requirement, the corresponding scaling functions and wavelet 
functions can be adopted to improve the numerical calculation precision. Especially, those wavelets with 
compactly supported property and orthogonality, such as Daubechies wavelets, can play an important role in 
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many problems [9]. Because of the compactly supported property, if the Daubechies wavelets are considered as 
the interpolation functions of the finite element method, the coefficient matrices obtained are sparse matrices 
and their condition number can be proved independent to the dimension [10]. Moreover, a new method could be 
provided because of the existence of various basis functions, which can increase the resolution without changing 
mesh.  
In this paper, the wavelet Galerkin finite element method is applied to the direct simulation of the wave equation 
in the fluid-saturated porous medium. The scaling functions of Daubechies wavelets are considered as the 
interpolation basis functions instead of the polynomial functions and the wavelet element is constructed. 
Because a kind of characteristic function is introduced, the integral difficulty for lacking of the explicit 
expression for the Daubechies wavelets is solved. Based on the recursive expression of calculating the function 
value of Daubechies wavelets on the fraction nodes, the rapid wavelet transform between the wavelet coefficient 
space and the wave field displacement space is constructed and reduces the computational cost. The results of 
numerical simulation demonstrate the method is effective. 
 

2. Wavelet Galerkin Finite Element Solution of 1-D elastic wave equation in fluid-saturated porous 
medium 

 
From the Biot theory, the 1-D differential equation governing wave propagation in the fluid-saturated porous 
medium, without fluid viscosity, can be expressed as:    
 
 ( ) 12 f

uM M u
x x x x

ωλ μ α α ρ ρ ω∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + = + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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β  is the porosity, (1 ) s fρ β ρ βρ= − +  is the bulk density of solid-fluid mixture, and sρ and fρ  are the 

densities of solid and fluid, respectively. t is time and ,bλ μ  are the Lame coefficients, 2
b Mλ λ α= +  where 

α  is the effective stress parameter and M  is the compressibility of pore fluid. 1 b sK Kα = − , 

[ ( 1s s fM K K K )]α β= + −  where , ,s fK K Kb  are the bulk change modulus of the solid, fluid and skeleton, 
respectively. 2 3b bK λ μ= +  
Multiplying both sides of the fluid-saturated porous medium wave equation by the Daubechies wavelets basis 

function 2( ) 2 (2 )
j

j
jk x x kφ φ= − , and integrating them at[0 , we can get , ]L
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By using integration by part 
 

( ) ( )
0 0

0 0

( ) ( )
2 ( ) 2 d ( )

L L
L Ljk jk

jk jk d
x xu uM x M x M x M

x x x x
φ φω ωλ μ α φ λ μ α α φ α
∂ ∂∂ ∂ ∂

+ + − + + + −
∂ ∂ ∂ ∂∫ ∫ x

x x
∂
∂ ∂

x

 

( )10
( )d

L

f jku f xρ ρ ω φ= + −∫ &&&&     (2.5) 

- 2 - 



0 0
0 0

( ) ( )
( ) d ( ) d

L L
L Ljk jk

jk jk

x xu uM x M x M x M
x x x x x

φ φω ωα φ α φ
∂ ∂∂ ∂ ∂ ∂

− + −
∂ ∂ ∂ ∂ ∂∫ ∫ x

x∂

k

 

( )20
( )d

L

f ju m f x xρ ω φ= + −∫ &&&&   (2.6) 

Set         
j

0

l l
l 2 2 2 L

( ) ( ) ( )j
N

u x a t xφ
= − −

= ∑
j

0

l l
l 2 2 2 L

( ) b ( ) ( )j
N

x t xω
= − −

= ∑ φ  (2.7) 

 
Upon substituting Eqn.(2.7) into Eqns.(2.5) and (2.6), one gets 
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By rearranging, Eqn.(2.8) and (2.9) become   
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If select ， , Eqn. L 1= j 0= (2.7) become  
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Set  1 2 2 2 0( , )a 1 2 2 2 0( , )b 1 2 2 2 0 1 2 2 2 0( , , , T
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Then, Eqns.(2.10) and (2.11) can be changed into an equation system of coefficient   R
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Using the 2-order center difference to approximate the two derivatives in the Eqn. (2.13), we can obtain 
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Arranging above equation, we have  
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Initial Conditions:      (0) (0) 0k ka b= = (1) (1) 0k ka b= =     (2.16) 
 
So, we can obtain the wavelet coefficients at each time level by solving above Eqns. (2.15) and (2.16) with 
some boundary conditions, and then substitute the wavelet coefficients into the Eqn.(2.12), the wave field 
displacements can be obtained. The integral values of Daubechies wavelets in the coefficient matrix can be 
solved by introduce a kind of characteristic functions [11, 12]. 
 
3. Rapid Wavelet Transform 
 
In order to obtain the wave field displacements conveniently and quickly, the fast wavelet transform between 
the wavelet space and the wave field displacements is constructed as follows:  
      
 U P=Φ                                    (3.1) 
 
U  is the wave field displacement vector,  is the wavelet coefficient vector,  is the wavelet transform 
matrix. 

P Φ

For the sake of simplicity, take the DB2 wavelet as the example. There are 7 nodes in solution field. 
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⎜ ⎟⎜ ⎟
⎝ ⎠
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It is important for constructing the fast wavelet transform to solve the function value of the Daubechies wavelets 
on the fraction nodes. So, the recursive expression of calculating the function value of Daubechies wavelets on 
the fraction nodes is deduced to save the computational cost  
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in which  
10,1, 2 2 1: 2 : 2 1 mod 2ni N p q p n−= − = − =L  controls the mesh partition. n

 
4. Numerical Simulation 
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To verify the correctness and accuracy of the wavelet Galerkin finite element method, an example is given to 
compare the results obtained by this method with an analytical solution. A one-dimensional column of length 

as sketched in Fig.1 is considered. It is assumed that the side walls and the bottom are rigid, frictionless, and 
impermeable. At top, the stress 
l

yσ and the pressure ρ  are prescribed. The boundary conditions are 
 

0y 0 y 0 y l y l
u 0, P ( ), pf tω σ

= = = =
= = = − = 0  

For this model, if the permeability tends to infinity i.e.κ →∞ , the analytical solutions in time domain are [13]  
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Where E is Yang modulus, assuming a Heaviside step function as temporal behavior i.e. , and together 
with vanishing initial conditions. 
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In the example, three very different materials, a rock (Berea sandstone), a soil (coarse sand), and a sediment 
(mud) are chosen. The material data are given in Table 1. The results, both the analytical method and the 
wavelet Galerkin finite element method developed in this paper, are shown in Fig.2, Fig.3, Fig.4 with results 
plotted in dash lines and dot. All the figures show that the numerical solutions are perfectly close to the 
analytical solutions, so the method developed in this paper has a very high degree of calculating accuracy. 
 

Table 1 The parameters of Fluid Saturated Porous Medium 

 (P )K a  (P )G a  3(kg/m )ρ  β  (P )sK a  3(kg/m )fρ  (P )fK a  

rock 98.0 10×  96.0 10×  2548  0.19 103.6 10×  1000  93.3 10×

soil 82.1 10×  79.8 10×  1884  0.48 101.1 10×  1000  93.3 10×  

sediment 73.7 10×  72.2 10×  1396  0.76 103.6 10×  1000  92.3 10×
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Fig.1 Model of Fluid Saturated Porous Medium 

 
Fig.2 The Pressure of Rock ( 1000ml = , 995my = ) 

 

 
Fig.3 The Pressure of Soil ( 1000ml = , 995my = ) 
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Fig.4 The Pressure of Sediment ( 1000ml = , 995my = ) 

 
5. Conclusion 
 
In this article, the wavelet Galerkin finite element method is constructed by combining the finite element 
method with wavelet analysis, and is applied to the numerical simulation of the fluid-saturated porous medium 
elastic wave equation. For the beautiful and deep mathematic properties of Daubechies wavelets, such as the 
compactly supported property, vanishing moment property and so on, the wavelet Galerkin finite element 
method has the feature of quick iterative rate, high numerical precision and good stability. Moreover, contrasts 
to h- or p-based FEM, a new refine algorithm can be presented because of the multi-resolution property of the 
wavelet analysis. The algorithm can increase the numerical precision by adopting various wavelet basis 
functions or various wavelet spaces, without refining the mesh. 
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