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ABSTRACT: A new high-order lumped-parameter model (LPM) for foundation vibrations is proposed in this 
paper. Instead of partial fraction expansion used widely, the continued-fraction expansion is applied as a 
mathematical tool to construct the new LPM, so that its parameters can be obtained by only real-number 
operations and its configuration is independent of problem analyzed. The new LPM has a condensed physical 
configuration with few parameters as possible and is easily extended to higher order. Moreover, due to the LPM 
with mass on each internal degree of freedom, the resulting structure-foundation-soil system can be solved by an 
explicit time-integration method. The effectiveness of new LPM is verified by analyzing the benchmark 
problem of semi-infinite rod on elastic foundation. 
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1. INTRODUCTION 
 
In time-domain foundation-vibration or general soil-structure-interaction analysis, the lumped-parameter model 
(LPM) [1] is an effective method to represent the foundation-soil system in time domain, which consists of one 
or several springs, dashpots, and masses with frequency-independent real but not necessarily positive 
parameters, and contains the additional internal degrees of freedom introduced. The existing LPMs can be 
divided into two types: the simple or semi-empirical LPMs [2-6] and the so-called high-order LPMs [1, 7-10]. This 
paper concentrates on the latter. 
 
The high-order LPMs are constructed by a systematic procedure proposed by Wolf [7]. The procedure can be 
summarized as two successive steps: the foundation frequency response (dynamic stiffness or flexibility) is first 
approximated by a rational function in complex frequency with real parameters, and the rational function is then 
realized as various types of LPMs. Here, the rational function is called as continuous-time rational 
approximation (CRA), and the resulting LPMs are called as high-order due to the asymptotic exactness of CRA 
with its order increasing. In this systematic procedure, the CRA determined the stability and accuracy of the 
resulting LPMs, which has been studied in great detail in [11]. The differences of various LPMs obtained from 
same CRA mainly lie in the aspects of physical configuration, time-integration method, earthquake input and so 
on. This paper aims at the second step to develop a new high-order LPM.  
 
The partial-fraction expansion of rational function is an effective and widely used mathematical tool to construct 
various high-order LPMs. Wolf [1, 7, 8] proposed a set of parallel-form consistent LPMs based on the 
partial-fraction expansion of CRA of dynamic stiffness. Wu and Lee [9] proposed a series-form systematic LPM 
based on the partial-fraction expansion of CRA of dynamic flexibility. The partial-fraction expansion requires 
the complex analysis in determining the poles and residues. Moreover, the number of its first- and second-order 
terms is dependent of problem analyzed, so that the configuration of resulting LPM is also problem-dependent. 
 
Alternatively, the continued-fraction expansion [12] of rational function can be used to construct high-order 
LPMs instead of a partial-fraction expansion. Wu and Lee [10] proposed a set of nested LPMs based on the 
so-called nested division (that is actually a type of continued-fraction expansion) of CRA of dynamic stiffness. 
Based on continued-fraction expansion, the construction of LPM involves only operations of real numbers and 
its configuration is independent of problem analyzed. 
 



Moreover, an important problem of designing a LPM is whether it should contain masses. Wu and Lee [9, 10] 

developed a set of LPMs without any mass. Wolf [1, 7, 8] developed several different discrete-element models, 
some of which do not contain any mass and the others contain mass on each internal degree of freedom. The 
advantage of a LPM without any mass is that no extra work is needed for determining the input motion or the 
driving loads in their applications to seismic analysis. In contrast, the advantage of a LPM with mass on each 
internal degree of freedom lies in that the dynamic equation of the resulting structure-foundation-soil system can 
be solved by an explicit time-integration method. 
 
In this paper, a mainly series-form high-order LPM with mass on each internal degree of freedom is proposed 
based on the continued-fraction expansion of decomposed CRA of foundation dynamic stiffness.  
 
 
2. CONTINUOUS-TIME RATIONAL APPROXIMATION OF DYNAMIC STIFFNESS 
 
The dynamic stiffness of a massless rigid foundation is a complex-valued function dependent of the Fourier 
radian frequency ω . It is conventionally normalized with respect to its static stiffness S0 and given as a function 
of the dimensionless frequency Scd /ωω =  with a characteristic length d (of foundation) and the (shear) wave 
velocity cS (of soil), as follows 
 

[ ])()()( 0 ωωωω cikSS +=                                (2.1) 
 
where 1−=i , )(ωk  and )(ωc  are the dimensionless spring and damping coefficients dependent of 
dimensionless frequency, respectively. The static stiffness leads to 1)0( =k . For many foundation-soil systems, 
the high-frequency limits  of their damping coefficients are known. )(∞=∞ cc
 
The CRA of foundation dynamic stiffness can be written as [11]

 

N
N

N
N

CC sqsq
spsp

SsSSS
+++

+++
==≈

+
+

...1
...1

)()()(
1

1
11

0ωω                      (2.2) 

 
where the order of the numerator polynomial N+1 is one more than that of the denominator N, s  is the 
dimensionless complex frequency, ωis =  here. If  is known, ∞c NN qcp ∞+ =1  in Eqn. 2.2 so that the CRA 
is exact (doubly asymptotic) at high- and low-frequency limits. The real parameters pj and qj are determined by 
fitting the rigorous dynamic stiffness values. An effective parameter identification method sees [11]. 
 
 
3. CONTINUED-FRACTION EXPANSION 
 
It is inconvenient to perform the continued-fration expansion directly for Eqn. 2.2 due to the order of its 
numerator polynomial one more than that of its denominator. Therefore, Eqn. 2.2 is first decomposed into a sum 
of a linear polynomial and a product of complex frequency and a new rational function, in a way that the 
highest-order and constant terms in numerator are simultaneously removed and then the common factor s  in 
the new numerator is extracted, as follows 
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In Eqn. 3.1, a superscript is added to the parameters of the new rational function to differ from the original one, 
and also denotes how many rounds of the division operation have been performed. Note that the constant and 
linear terms of the linear polynomial represent the dimensionless static stiffness and high-frequency limit of 
dimensionless dynamic stiffness, respectively, which ensures the doubly asymptotic feature of the resulting 
LPM. On the other hand, the product of complex frequency and new rational function accurately replicates the 
rigorous dimensionless dynamic stiffness values between the static and the high-frequency limits. 
 
Now, the new rational function )()( )1()1( sQsP  can be expanded into continued frations. Performing the 
division for  with respect to  in a way that the highest-order two terms of  are 
simultaneously removed, a new generation of rational function 

)()1( sQ )()1( sP )()1( sQ
)()( )2()2( sQsP  can be obtained. This new 

rational function holds exactly the same form as that before division, only with one term reduced in the highest 
order for both the numerator and denominator polynomials. Accordingly, the l-th time division from 

)()( )()( sQsP ll  to )()( )1()1( sQsP ll ++  can be generally written as 
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with the definition of . Applying Eqn. 3.3~3.5 recursively, the continued-fraction expansion of 0)(

1 =−
lp

)()( )1()1( sQsP  can be obtained as 
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4. HIGH-ORDER LUMPED-PARAMETER MODEL  
 
To realize Eqn. 3.1 with Eqn. 3.6, a new high-order LPM shown in Figure 1 is designed, which consists of an 
end-fixed parallel spring-dashpot model in parallel with an end-free in-series system including N in-series 
dashpot-mass models, and introduces N internal nodes each of which has an internal degree of freedom. Note 
that this LPM is mainly in-series and with mass on each internal node. Its time-domain motion equations are 
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with u0=u, un+1=cn+1=0, where f is a force exerted on foundation, u is the corresponding foundation displacement, 
ul are the auxiliary internal degrees of freedom introduced, the dot on variable denotes the derivative to time, k, 
c (cl), and ml are the undetermined spring, dashpot, and mass parameters, respectively.  
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Figure 1 The new high-order lumped-parameter model 

 
Performing Fourier transform to Eqn. 4.1 and defining the dimensionless spring parameter η , the 
dimensionless dashpot parameters a and al, and the dimensionless mass parameters bl, all of which satisfy 
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the normalized dynamic-stiffness equation of the new LPM is obtained as  
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with , where 011 == ++ NN aB )(/)( 1 ωω −−= llll uuaB , BB1 can be further written as the following 
continued-fraction expansion 
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Now, the parameters of LPM can be obtained by comparing Eqn. 4.3 and Eqn. 4.4 with Eqn. 3.1 and Eqn. 3.6. 
Comparing Eqn. 4.3 with Eqn. 3.1, we have 
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Comparing Eqn. 4.4 with Eqn. 3.6, the following relation of parameters can be obtained as 
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with . A two-step recursive algorithm shown in Box 1 can be obtained from Eqn. 4.6 to compute the 
dimensionless parameters a

01 =+Na
l and bl in Eqn. 4.4 from the dimensionless parameters gl and hl in Eqn. 3.6. After al 

and bl are determined, the dimensionless parameters η  and a can be obtained from Eqn. 4.5. Finally, the 
physical parameters k, c, cl, and ml of LPM can be obtained from the dimensionless parameters η , a, al and bl, 
respectively, via Eqn. 4.2. 
 

Box 1. Algorithm for computing al and bl from gl and hl
 First compute al+1/al from l=N to 1: 
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5. NUMERICAL TESTS 
 
The benchmark problem of a semi-infinite rod on elastic foundation used very often in the literature is analyzed 
in this section. Due to with dispersive waves exhibiting a cutoff frequency below which the radiation damping 
vanishes, this system is a very stringent test for a LPM. The other reason why this problem is proper is that as 
mentioned in [11] the semi-infinite rod problem may have the stable CRAs and corresponding LPMs for all N in 
nature. As shown in Figure 2, the elastic modulus, cross-sectional area, and mass density of rod are E, A, and ρ , 
respectively. Foundation spring stiffness per unit length is . f and u denote force and displacement on rod 

end, respectively. If the characteristic length 
gk

gkEAd = , the wave velocity ρEcS = , and the static 

stiffness gEAkS =0  are further defined, the exact dynamic stiffness of system can be obtained as  
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It is clear from Eqn. 5.1 that the cutoff frequency is 1=ω  and the high-frequency limit of dimensionless 
damping coefficient is 1=∞c .  
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Figure 2 Semi-infinite rod on elastic foundation 

 
The CRA of foundation frequency response (dynamic stiffness or flexibility) as the first step of a systematic 
procedure of constructing LPMs mentioned in Introduction has been studied in great detail in [11]. 
Correspondingly, this paper concentrates on the second step of this procedure to propose new LPM. Therefore, 
the CRAs obtained in [11] are here used and listed in Table 1 for the cases of N=3, 4 and 5, respectively. These 
CRAs are all stable because all real parts of their poles are negative. They are also accurate for fitting exact 
foundation frequency responses, and the accuracy is considerably improved as N increasing. The corresponding 



new LPMs are show in Table 1 for the cases of N=3, 4 and 5, respectively. For comparison, the Wu-Lee LPMs 
[9] realized from these same CRAs are also given in Table 1, which have been actually presented in [11]. 
 

Table 1 CRAs and corresponding LPMs 
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To investigate the performance of the new LPM applied to the time-domain analysis, the time-domain 
soil-structure-interaction analysis is performed by truncating the semi-infinite rod. The truncated infinite part is 
modeled by LPM and the residue finite part does by finite element method. The dimensionless physical models 
with load shown in Figure 3 of [11] exerted on the end of rod are used, where the dimensionless time is 



dtct S= . To test stringently, only two finite elements with dimensionless element size 01.0=Δx  are used in 
finite part. The implicit Newmark time-integration method [13] is used for structure-foundation-soil system 
including the new LPMs or Wu-Lee LPMs as does in [11]. Moreover, the explicit time-integration method [14] 
that can treat with non-diagonal damping matrix is used for the system including the new LPMs. The 
dimensionless time-step size is 005.0=Δt . The extended solution is used as the reference one, which is 
obtained via taking the finite part large enough to prevent any reflection from truncated boundary to rod end 
before dimensionless time 50. Since the errors resulting from finite element discretization are also present in 
extended solution, the difference between LPM solution and extended solution is caused only by LPM. The 
time-domain results obtained by implicit Newmark method are show in Figure 3. It can be seen that in each case 
of N=3, 4 or 5 the result of new LPM is identical with that of Wu-Lee LPM, which indicates as a conclusion in 
[11] that the stability and accuracy of LPMs realized from same CRA are identical and determined by those of 
the CRA. Moreover, comparing with the extended solution, the accuracy of LPM solution is improved 
considerably as N increasing, and a very well fitting is obtained in the case of N=5. The time-domain results 
obtained by explicit method are shown in Figure 4. It can be seen that all explicit solutions are correspondingly 
identical with the implicit solutions, which indicates the advantage of the new LPM that can be solved by 
explicit time integration. 
 

0 10 20 30 40 50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 

 

D
im

en
si

on
le

ss
 d

is
pl

ac
em

en
t

      N=3
 NewLPM
 Wu-Lee LPM

0 10 20 30 40 50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 

 

      N=4
 New LPM
 Wu-Lee LPM

0 10 20 30 40 50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 

 

      N=5
 New LPM
 Wu-Lee LPM

 

0 10 20 30 40 50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

 

 

D
im

en
si

on
le

ss
 d

is
pl

ac
em

en
t

Dimensionless time

      N=3
 New LPM
 Extended solution

0 10 20 30 40 50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
      N=4

 New LPM
 Extended solution

 

 

Dimensionless time
0 10 20 30 40 50

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
      N=5

 New LPM
 Extended solution

 

 

Dimensionless time  
Figure 3 Comparison of new LPMs with Wu-Lee LPMs using implicit Newmark time integration 
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Figure 4 Results of new LPMs using explicit time integration 

 
 



6. CONCLUSIONS 
 
The systematic procedure based on continuous-time rational approximation (CRA) [11] is applied in this paper to 
develop new lumped-parameter model (LPM) for representing the dynamic foundation-soil system. Such LPM 
is here called high-order due to the asymptotic exactness of CRA as its order N increasing. A new high-order 
LPM is proposed in this paper based on the continued-fraction expansion of decomposed CRA of foundation 
dynamic stiffness instead of partial-fraction expansion widely used. This new LPM is mainly in-series and 
designed with mass on each internal node with an auxiliary internal degree of freedom. Comparing with the 
existing high-order LPMs, the advantages of the new LPM can be summarized as follows: 
(1) Only real-number operations in construction result in the problem-independent configuration due to using 

the continued-fraction expansion. 
(2) The condensed physical configuration with fewer parameters. 
(3) The easy extension to higher order based on a parameter identification method for CRA proposed in [11].  
(4) The explicit time integration can be applied due to with mass on each internal degree of freedom. 
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