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ABSTRACT : 

It is known that the interior of the yield surface is a purely elastic domain for the conventional plastic
constitutive equation. So, it is incapable of describing the plastic deformation due to the change of stress inside 
the yield surface (Drucker, 1988). Sub-loading surface theory assumes that the sub-loading surface always 
passes through the current stress point and also keeps the similar shape to the yield surface (Hashiguchi, 1980), 
and it expands/contracts with the plastic deformation. So, it can be extended to the description of cyclic loading
behavior as has been done by Hashiguchi (1989) and by Hashiguchi and Yoshimaru (1995) for metals and by
Topolnicki (1990), by Hashiguchi and Chen (1998) , by L. KONG, Y.R. ZHENG and Y.P. YAO (2003a,b) for 
soils. In this paper, based on sub-loading surface theory, an elasto-plastic model for dynamic constitutive 
relation of soil is deduced. The model is tested with the dynamic triaxial tests of sand. Then, the model is used 
to analyzing soil liquefaction by compiled to an explicit numerical wave method, which is based on soil
mechanic model of fluid-saturated porous media theory and combined with viscous-spring artificial boundary. 
Finally, a soil liquefaction example induced earthquake is analyzed. 

KEYWORDS: Sub-loading surface theory, Soil dynamic constitutive relation, Explicit numerical 
wave method, Soil liquefaction 

 
 
1. INTRODUCTION 
 
It is well known that earthquake maybe cause severe damage to country economy and life security. For
example, the 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the
Hanshin and Awaji areas; the 1999 Kocaeli earthquake caused extensive liquefaction-induced ground 
deformations along the coasts of Sapanca Lake; the 1999 Chi-Chi, Taiwan earthquake caused great destruction 
to buildigs, bridges, and other facilities, and a death toll of more than 2400. In these earthquakes, a major cause 
for the damages is the foundation’s invalidation. Under a dynamic loading (such as earthquake), the
characteristics of soils can be changed. So, it is very important that the characterization of soil behavior is
simulated accurately. 

The purpose of a constitutive model is to simulate the soil behavior with sufficient accuracy under all loading 
conditions. There are many constitutive models describing soil’s properties, such as Duncan-Chang elastic 
model, Prandtl-Reuss plastic model, Drucker-Prager model, Mohr-Coulomb model, Cam clay model, 
Lade-Duncan model, and Dafalias-Herrmann bounding surface model, and so on. And the elasto-plastic 
constitutive model is important in using. But, the interior of the yield surface is a purely elastic domain for the
conventional plastic constitutive equation, it is incapable of describing the plastic deformation due to the
change of stress inside the yield surface (Drucker, 1988). Then, it cannot describe the unloading properties of
soils accurately.  

Sub-loading surface theory assumes that the Sub-loading surface always passes through the current stress 
point and also keeps the similar shape to the yield surface (Hashiguchi, 1980), and it expands/contracts with the
plastic deformation. So, it can be extended to the description of cyclic dynamic loading behavior as has been 
done by Hashiguchi (1988, 1989) and by Hashiguchi and Yoshimaru (1995) for metals and by Topolnicki
(1990), by Hashiguchi (1998,2002,2003) , by L. KONG, Y.R. ZHENG and Y.P. YAO (2003a,b) for soils. In
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this paper, based on sub-loading surface theory, an elasto-plastic model for dynamic constitutive relation of soil 
is deduced. And the model is tested with the dynamic triaxial tests of sands. Then, the model is used to
analyzing soil liquefaction by compiled to an explicit numerical wave method (LI., 2007), which is based on 
soil mechanic model of fluid-saturated porous media theory and combined with viscous-spring artificial 
boundary (Du and Li., 2008). Finally, a soil liquefaction example induced by earthquake is analyzed. 
 
 
2. AN ELASTO-PLASTIC DYNAMIC CONSTITUTIVE MODEL BASED ON SUB-LOADING 
SURFACE THEORY 
 
2.1. Formulation of dynamic constitutive model  
From Hashiguchi’s works (Hashiguchi, 1980, 1989), we know that the Sub-loading surface theory can describe 
the plastic strain rate due to the rate of stress inside the yield surface. It is assumed that the plastic strain rate
progresses as the ratio of the size of the Sub-loading surface to that of the yield surface increases, so, it is used
to simulate cyclic loading behavior of soils.  

In Sub-loading surface theory, the yield surface in the conventional sense is renamed the normal-yield 
surface in order to express its physical meaning clearly, and there is a Sub-loading surface which 
expands/contracts existing inside the normal-yield surface, passing always through a current stress point in not 
only a loading but also an unloading process and keeping a similarity to the normal-yield surface (Figure 1). 
Now, in this section, an elasto-plastic dynamic constitutive model based on Sub-loading surface theory is 
formulated concretely for soils incorporating the modified elliptic-hyperbolic yield surfaces model (M.Y. 
ZHANG, 1994; Z.Z YIN, 1996). 

 
Figure 1 Normal-yield surface and Sub-loading surface (Hashiguchi, 1989) 

 
The modified elliptic-hyperbolic yield surfaces model (Z.Z. YIN, 1996) assumes that the strain of soil 

include three parts, i.e. elastic stain, the plastic strain related to shear contraction, the plastic strain related to
shear dilatation, and the strain which doesn’t effect the volume change during shearing.  

{ } { } { } { } { }e p1 p2 p3d d d d dε ε ε ε ε= + + +                        (2.1) 

where, edε represents the elastic strain; p1dε represents the plastic strain related to shear contraction, and
reflected with elliptic yield surface; p2dε represents the plastic stain related to shear dilatation, reflected with 
hyperbolic yield surface; p3dε represents the plastic strain which doesn’t effect the volume change during 
shearing, submit to the generalized Hooke’s law.  

The first yield rule 1f to reflect p1dε  is written as:  
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rp and M are the intercept and slope coefficient of the failure line pq −f on the axis p , respectively, 
ϕcotr cp = , 6sin (3 sin )M ϕ ϕ= − ; 1M  is a parameter larger than M , which has relation to the shape of 

stress-strain curve; c andϕ are the parameters of Duncan-Chang elastic model; h and t are the hardening 
parameters; p

vε  is plastic volume strain. 

The second yield rule 2f modified by M.Y. ZHANG (1994) to reflect p2dε  is:  
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f2 RMM = , fR is the failure ratio of Duncan-Chang elastic model; )22( ν+= EG ， iEE )0.3~2.1(= , 
and iE is the initial elastic modular. 

The third plastic strain submits to the generalized Hooke’s law, then, it is integrated with the elastic strain 
during calculation, and expressing:  

{ } { } { }p3e' ddd εεε +=                                   (2.4) 
where, the elastic modular is changed as 
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k and n are also the parameters of Duncan-Chang elastic model. 
The third plastic strain will be initiated while the stresses satisfy the second yield rule and 0qq > , which 

0q is the maximal shear stress in history. 
Then, the Normal-yield surface is expressed as 
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where, ασσ −=ˆ , the second-order tensorα is the kinematic hardening variable, and σ is the current stress 
point. 

According to Hashiguchi’s works, there are the following relations 
αsσασσ RR −−−=−= )1( , RR )(/ˆ sσαsσσ −+−== , )( αssα −−= R    (2.6) 

where, R is the normal-subloading ratio, which is the ratio of the size of the sub-loading surface to that of the 
normal-yield surface, 0 1R≤ ≤ . 0R = corresponds to the most elastic state  where σ coincides with α , 
and 1R = corresponds to the normal-yield state where σ  lies on the normal-yield surface; s is the 
similarity-center that exists for the specified configuration of the normal-yield and the sub-loading surfaces.  
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For the first two yield surface, we suppose that the coordinate of the similarity-center are 
),( q

v
p

v ss and ),( q
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p
s ss , respectively; and the center point lie in the origin of the p q− coordinate system. 

The following relations hold: 
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The expressions are 
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Based on the two yield rules, the evolvements of the two similarity-centers and normal-subloading ratios are 
formulated, which are 
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where, vc 、 sc 、 vu 、 su are the material constants; vR and sR are the volume normal-subloading ratio and the 
shear normal-subloading ratio. 

Finally, the relations are formulated as 
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where, the expressions of 1β , 2β , 3β , 4β can be seen in references( Li, 2007). 
The loading criterion is 
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2.2. Test verification by Dynamic triaxial test 
Dynamic triaxial tests of sands were carried through in the soil mechanic laboratory of Beijing University of 
Technology. They are un-drained dynamic triaxial test, under several concretion pressures. The typical dynamic 
triaxial test records are shown in Figure 2, and Figure 3 is the simulation result of the axial strain history with
the proposed model, with the axial stress and pore pressure are independent variable of calculating. From the
result, we can see that it is good agreement between experiment and simulation result. 
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     Figure 2 The history of the dynamic triaxial test         Figure 3 The axial strain history from the test and  

simulation result with the model 
 
 
3. NONLINEAR EXPLICIT FEM TO ANALYZE THE WAVE PROPAGATION IN SATURATED 
POROUS MEDIA 
 
The formulations of the soil mechanics model to analyze the wave propagation in saturated porous media
include 
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Using the finite element reduction and decoupling technique, the dynamic equilibrium equations of one nodal 
point are written as 
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where, siM , fiM and tiM  are the solid mass, fluid mass, and total mass of the nodal point i ; 
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stiffness matrix of element L ; d jU and d jV  are the displacement increment vectors; jG is the gravity 

vector; sd jP and fd jP are the loading increment vectors. 
Employing an explicit time integration proposed by J.T. WANG(2001), the following formulations are gained
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Combining with a viscous-spring artificial boundary in near-field wave propagation analysis of saturated 
porous media (DU & LI, 2008), the formula (3.2) to (3.3) are changed as 
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where, ss ( ) ( )k i k iK , sf ( ) ( )k i k iK , ss ( ) ( )k i k iC , sf ( ) ( )k i k iC are the solid phase spring or damp parameters,

and fs ( ) ( )k i k iK , ff ( ) ( )k i k iK , fs ( ) ( )k i k iC , ff ( ) ( )k i k iC  are the fluid phase spring or damp parameters in the viscous-spring 
artificial boundary; The superscript F represents the free site.  

And then, the calculation formulations of boundary nodal point are gained which are similar to the formula
(3.4a) to (3.4d).  
 
 
4.ANALYSIS ON SOIL LIQUEFACTION 
 
4.1. A method to distinguish soil liquefaction 
There is a relation in soil mechanics        ( ) ϕστ tanu−=                                 (4.1) 

So, the criterion of soil liquefaction is     σ=u                                          (4.2) 
In three stress-space, there is following relation  ( ) ϕστ tansd

oct
f
oct u−=                         (4.3) 

In the three dimension complex stress state, the earthquake force can be disintegrated into hydrostatic stress
and deviatoric stress carried by pore water and soil skeleton in saturated soil, respectively. (Figure 4) 
 

 
Total dynamic stress     Hydrostatic stress      Deviatoric stress 

Figure 4 Analysis of the dynamic stress 
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There are the following octahedral dynamic normal stress and octahedral dynamic shear stress 
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if 0.1=uα , liquefaction will take place, and if 0.1<uα , there isn’t liquefaction, but its value indicates the 
degree of liquefaction. 

So, combining the above criterion to the FEM program, the soil liquefaction will be distinguished according
the calculated stresses. 
 
4.2 Soil liquefaction example 
There is a free site, its layer is composed of top clay ( Thickness d=2m, Shear modulus G=1.0×107Pa, Density 

sρ =2.0×103kg/m3, Poisson’s ratio ν =0.3, the strength index M=1.55, M1=1.5, M2=1.48, pr=2100.0kPa, 
c=1642.0kPa,  φ=38.0°, Rf=0.96, h=899.0, t=53.0, and parameters of sub-loading surface model vc =4.0, 

sc =4.0, vu =50.0, su =30.0), middle saturated sand (Thickness d=8m, Compression modulus of Solid 

sE =3.6×109Pa , Shear modulus G=1.0×107Pa, Density of solid grain sρ =2.0×103kg/m3, Poisson’s ratio 
ν =0.3, Porosity n=0.367, Density of fluid wρ =1.0×103kg/m3, Volume compression modulus of 
fluid wE =2.0×108Pa , Coefficient of permeability kx=ky=8.0×10-4m/s, the strength index M=1.68, M1=1.93, 
M2=1.84, pr=6.373kPa, c=5.44kPa, φ=41.0°, Rf=0.96, h=4400, t=1.88.0, and parameters of sub-loading surface 
model vc =15.0、 sc =15.5、 vu =50.0、 su =30.0), and bottom clay (Thickness d=8m, Shear modulus 
G=1.5×107Pa, Density sρ =2.0×103kg/m3, Poisson’s ratio ν =0.3, the strength index M=1.55, M1=1.5, 
M2=1.48, pr=2100.0kPa, c=1642.0kPa, φ=38.0°, Rf=0.96, h=899.0, t=53.0, and parameters of sub-loading 
surface model vc =4.0, sc =4.0, vu =50.0, su =30.0).  

The calculated area is a rectangle area whose size is 20.0m×18.0m, the element type is quadrilateral 
isoparametric element whose size is 2.0m. The input load is horizontal earthquake motion in plane which is
inputted from the bottom of the area, whose time history of displacement, velocity and acceleration are showed 
in Figure 5 to 7. Figure 8 is the Fourier Spectrum of the input earthquake acceleration. 
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Figure 5 Displacement history of the input earthquake motion    Figure 6 Displacement history of the input earthquake motion 
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Figure7 Acceleration history of the input earthquake motion   Figure 8 Fourier Spectrum of the input earthquake acceleration 

 
The following figures are the calculated results. Figure 9 to 10 are the Solids horizontal displacements 

history and the Fluid horizontal displacements history in different depth, respectively. Figure 11 to 12 are the 
Solids horizontal velocity history and the Fluid horizontal velocity history in different depth, respectively. From 
the two former figures, we can see that the displacement amplitude of shallow layer is great than that of deep
layer. From the two latter figures, it is known that the velocity amplitude also submits the same law. 
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Figure 9 Solids horizontal displacements history in different depth  Figure 10 Fluid horizontal displacements history in different depth
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Figure 11 Solids Horizontal velocity history in different depth  Figure 12 Fluid Horizontal velocity history in different depth 

 
Compare the calculated Solids horizontal acceleration and its Fourier spectrum of the surface to the input

horizontal acceleration and its Fourier spectrum (Figure 8 to 9, Figure 13 to 14), we know that the frequency 
component changes from wide to narrow, and the major frequency component of the surface is low frequency. 
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Figure 13 Solid Horizontal acceleration on surface   Figure 14 Fourier Spectrum of Solid Horizontal acceleration on surface
 

In order to analyze soil liquefaction of the site, the Pore Pressures and their corresponding Pore Pressure
Ratio history are also studied (Figure 15 to16). From these results, it is concluded that (1) the pore pressure 
ratio history curves enlarge step by step and then keep gentle; (2) Pore pressure ratio of the shallow sand layer
is greater than that of the deep layer, it indicates that the shallow sand layer’s resistivity of liquefaction is small 
than the deep sand layer’s. 
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Fig.15 Pore Pressure history 
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Fig.16 Pore Pressure Ratio history 

 
 
5. CONCLUSION 
 
In this paper, based on the sub-loading surface theory, an elasto-plastic model for dynamic constitutive relation
of soil is deduced, and it is compiled to an explicit numerical wave method, which is based on soil mechanic 
model of fluid-saturated porous media theory and combined with viscous-spring artificial boundary. Then, 
integrating the suggested criterion of soil liquefaction, a method to analyze soil liquefaction is proposed.
Finally, a soil liquefaction example under earthquake is analyzed. 
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