
The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: 
THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS 

K. Worakanchana1 and K. Meguro2 
1
 Project researcher, International Center for Urban Safety Engineering, Institute of Industrial Science, 

 the University of Tokyo, Japan 
2 
Director, International Center for Urban Safety Engineering, Institute of Industrial Science, 

 the University of Tokyo, Japan 
Email: kawin@iis.u-tokyo.ac.jp 

ABSTRACT : 

Voronoi Applied Element Method (VAEM) has been developed based on previous Applied Element Method 
(AEM).  Compared to the original AEM, the advantages of VAEM are: the VAEM domain boundary can fit
any type of domain easily, pre-existing joint rather than horizontal and vertical joints can be modeled, element
size can be changed and displacement solution is not depended on the element size and etc.  The verification 
of the model from elastic to non-linear range is shown in the paper.  The proposed model shows good
compatibility with theoretical and experimental results. 
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1. INTRODUCTION 
 
Applied Element Method (AEM) is a numerical model for simulating structural behavior from elastic range to
total collapse (Meguro and Tagel-Din, 1997).  In AEM, a structure is modeled as an assembly of rigid
elements connected together with zero-length normal and shear springs.  The major advantages of AEM are
simple modeling and programming and high accuracy of the results with relatively short CPU time.  By using 
AEM, highly non-linear behavior, i.e. crack initiation, crack propagation, separation of the structural elements,
rigid body motion of failed elements and totally collapse behavior of the structure can be followed with high
accuracy.  The model can achieve high accuracy in simulating behavior of those materials.  However, due to
the fact that the model contains only square shape element, there was several disadvantages.  To eliminate 
these disadvantages, a new AEM based on Voronoi shape is proposed. 

 
 
Each element shape is based on the Voronoi tessellation (Okabe et al., 1992).  To represent the physical
domain with the Voronoi element, first, element nodes are given in the space within the domain.  Then, all 
locations in the physical domain are associated with the closest member(s) of the element nodal set with respect

Figure 2 Two-particle assemblage and their degree  
     of freedom (a) global coordinate (b) local coordinate
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  Figure 1 Example of a VAEM mesh 
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to Euclidean distance.  A region generated by a nodal point represents a Voronoi element (Figure 1). 
 
Using the Voronoi Applied Element Method (VAEM), the element nodes can be placed anywhere in the
physical domain with no constraint.  Therefore, they can be placed to fit with any domain shape without
considerably reducing the element size in the original AEM.  Moreover, element sizes can be varied and 
concentrated in areas of interest by varying the density of element nodes.  Also, the location of the element
nodes can be placed to create weak zones representing pre-existing joints in any direction.  In this paper, the 
formulation of the VAEM is introduced and verified in the elastic range and the non-linear range for reinforced 
concrete materials. 

 
 
2. VORONOI APPLIED ELEMENT METHOD (VAEM) 
 
2.1 Element Formulation 

Considering a two-particle subassemblage shown in Figure 2, each rigid particle has two translational and a
rotational degree of freedom defined at the particle centroid.  Assuming small rotations, motion at any points
(x,y) of a rigid body can be defined for element 1 and 2 as  
 

   u1=uc1- u3(y-yc1)  u2=uc2+ u3 (x-xc1) 
   u4=uc4- u6 (y-yc2)   u5=uc5+ u6 (x-xc2)         (1) 

 
where u1, u2 and u3 and u4, u5 and u6 are translational displacements and rotation angles of elements 1 and 2 in
the global coordinate.  Subscript c specifies the value at the particle centroid.  Point p on the boundary 
surface is separated and defined by p’ and p” after deforming (Figure 3).  The relative displacement vector of 
spring deformation in global coordinate at point p can be defined as 
 

    {δg}= p’p” = 4 1
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           (2)  

 
Substituting Equation (1) into (2) and rotating the displacement to the local coordinate parallel to the element
surface; we can obtain the relationship between spring deformation in local coordinate and particle
displacement in global coordinate is obtained:  

 
     {δl}=[R][B]{u}            (3) 

 
where {δl}T=[δn, δt] in which δn and δt are normal and shear deformation of spring, respectively,

[R]= cos sin
sin cos

α α
α α

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 is the rotational matrix, deformation-displacement relationship in global coordinates.
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 and {u}T = [u1, u2, u3, u4, u5, u6].  The strain energy due to 

spring deformation on the boundary line S can be given as  

   W= 
1
2 l l dSδ δT{ } [D]{ }∫            (4) 

where the constitutive relationship [D]=Diag[kni,, ksi] in which kni and ksi is stiffness of normal and shear springs
number i, respectively.  Applying Equation (8) into (9), we have: 

      W= 
1
2

{u}T[K]{u}             (5)  

where [K] = 
1

1

T[B] [D][B]
i

i

tn

i t

dS
+

=
∑∫  is the stiffness matrix due to all springs on the boundary.  ti and ti+1 indicate 

the initial and last points of the boundary portion representing the spring i (Figure 4).  By applying 
Castigliano’s theorem to Equation (5), stiffness equation can be derived as 
 

      {r}= ∂
∂

V
u

= [K]{u}              (6) 

 
where {r} contains the generalized force components associated with each displacement vector {u}. 
 
2.2 Equivalent continuum 
In this study, the relationship between discrete constants kni and ksi and the elastic properties follows the 
equivalent continuum method (Morikawa et.al., 1985).  The method employs the equivalence of strain energy
between the discrete and continuum system and the advantage of close-pack circular discrete element geometry. 
To apply this concept to the conventional AEM, it was found that these relationships are almost the same as the 
original proposed one but multiply by 3 .  Therefore, this relationship for VAEM is defined as 
 
Plane stress:  
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Plane strain:  
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         (8) 

 
where E is elastic modulus, ν = Poisson’s ratio, t = element thickness and d = distance between two particles. 
It should be noted that the Poisson’s ratio is limited from -1 to 0.33 for plain stress and -1 to 0.25 for plain 
strain to prevent a negative value of tangential stiffness. 
 
 
3. VERIFICATION FOR ELASTIC BEHAVIOR 
 
In this section, the behavior of VAEM in elastic range is verified by analyzing a cantilever beam and a circular 
disk. 
 
3.1 Cantilever beam 
The cantilever beam with a cross-section of 1x1 m2 and 10 m span is subjected to the point load at the free end. 
Young’s modulus is 2.14x107 kN/m2 and Poisson’s ratio is 0.  The displacement at the cantilever end obtained 
from VAEM and the original AEM are shown in the Table 1.  The table shows that both square shaped and 
Voronoi shaped AEM results match well with the theoretical result. 
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Figure 5 Geometry of cantilever beam 

 
Table 1 Comparison of displacement at the cantilever end of VAEM, AEM and theoretical solution 

 Exact (PL3/3EI) AEM VAEM 

δv(m) 9.20 9.12 9.22 
 
3.2 Circular disk 
This example shows the elastic analysis of a circular domain. This type of domain requires a large number of
elements in the original AEM to obtain accurate results due to its single size square-shaped element.  Figure 6
shows the VAEM mesh of circular disk of 8 unit diameter subjected to two point loads from the top and bottom
of the disk.  In this problem, the Young’s modulus used is 2.14x107.  The stress distribution at the center line 
is compared with the theory of elasticity and good agreement is observed (Figure 7). 
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4. VAEM FOR FRACTURE ANALYSIS OF CONCRETE MATERIAL 
 
The verification of VAEM for simulating plain and reinforced concrete structural behavior was conducted.
The original AEM has capability of tracking the crack distribution without prior knowledge of the crack 
location.  However, the crack distribution is limited to only the vertical and horizontal directions according to
the element shape.  With the VAEM, cracks have more freedom to propagate therefore the crack propagation
can better follow the real crack patterns. 
 
4.1 Concrete modeling 
In this model, the behavior of the material is initially elastic, i.e., σ=Eε, where E is the apparent concrete 
Young’s modulus.  Inelastic behavior is formulated based on similar concept of stress-strain boundary 
introduced by Cusatis et al. (2003).  Elastic behavior is limited by three boundaries, which are tension-shear, 
compression shear and compression as shown in Figure 8.  This concept is based on the normal and shear 
stress in the springs rather than the tensorial measure of stress therefore the criteria can be biased based on the
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mesh configuration.  Schlangen (1995) used a criteria based on stress measures computed at the nodes of a
beam lattice, rather than in the beams themselves.  Moreover, Meguro and Hatem (1998) employed the 
principal stresses concept similar to the use of tensorial measure by Schlangen.  However principal stresses is 
calculated at the springs themselves instead of element nodes.  Employing the principal criteria approach is 
expected to reduce the mesh bias on the fracture criteria however it is not included in this study.  In this model, 
a crack occurs if the force reaches tension-shear boundary.  Cracking is represented by reducing the original to
0.01 of the initial stiffness.  Then, all forces in normal and shear springs are redistributed.  If the force
reaches the compression shear and compression boundary, the stiffness of the spring is also assumed as 0.01 of
the initial stiffness however no force is redistributed. 
 

   Figure 8 Stress-strain boundary for concrete      Figure 9 Steel springs and their material properties 
 
4.2 Reinforcement model 
Unlike the previous AEM, the normal and shear spring for reinforcement do not usually go along the edges of
the elements.  The reinforcement was modeled by adding the normal and shear springs inclined to edges as 
shown in Figure 9.  In this study, perfectly plastic model was used in reinforcing bar to represent yielding
(Figure 9). 
 
4.3 Reinforced concrete modeling 
In this section, VAEM is used to simulate the reinforced concrete behavior in the monotonic static loading 
condition.  The numerical results are compared with the experiment results in the following sections. 

 
Table 2 Material properties of concrete and steel of beams 

Concrete Steel 
Fcu 

(MPa) 
Ft 

(MPa) 
pr1 pr2 Diameter 

(mm) 
Yield stress 

(MPa) 
27.9 2.7 0.4% 0.8% D16 362.8 

 
4.4 Size effect analysis 
A simulation of a beam from experiment by Iguro et al. (1985) was carried out.  The beam was not provided 
with shear reinforcement.  The material properties for beam are shown in Table 2.  The beam dimensions, 
reinforcement as well as load-deformation behavior are shown in Figures 10.  An applied load is uniformly 
distributed by water pressure system.  The main reinforcement ratio “pr” in the vicinity of the supporting 
where shear failure would occur is taken to be 0.4% and it is taken to be 0.8% in the middle of the beam. 
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Figure 10 Comparison of stress-displacement relation 

 
A mesh of 1,229 was used in the model.  Loading is applied using load control condition.  The comparison of 
the force-displacement relationship is shown in Figures 10.  It can be seen that the force-deformation 
relationships obtained from VAEM are close to the experimental results and numerical results from AEM and
FEM.  However, VAEM exhibits lower strength compared to AEM because the diagonal crack in VAEM is
represented by a shorter crack (less zigzag) which consumes less energy for generating.  From Figures 11 to 
13, by comparing crack patterns from VAEM with AEM and actual damage, it was observed that the crack 
patterns from VAEM is closer to the actual crack patterns than from AEM. 
 

 
Figure 11 Crack pattern from experiment 

 

 
Figure 12 Crack patterns by VAEM 
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Figure 13 Crack pattern by the original AEM 

 
 
5. LARGE DEFORMATION ANALYSIS 
 
To simulate the structural behavior under large deformations, the geometrical change has to be considered 
during each step of the calculation.  This requires the following additional procedures: 

 
1) Update the location of the element node according to previously calculated incremental displacement 
2) Calculate the geometrical residuals as 
 

   {RG}={f}-{Fm}     (16) 
 

This is to account for the incompatibility between the external applied forces vector, {f} and internal forces, 
{Fm} due to modification of geometry of the structure.      
3) Take into account the geometrical residual in the stiffness equation which can be written as: 
 
         [K]{u} = {r}+{RG}            (9)  
  

The verification of this method is shown in the following paragraphs.  The geometry of the beam subjected to 
the compressive load is shown in Figure 14.  Young’s modulus of the beam is equaled to 8.4x104 kN/m2.  The 
result obtained from the numerical model is compared with the analytical solution (Timoshenko, S.P. and Gere, 
J.M., 1961).  The numerical model predicts closely values for the theoretical buckling load and
force-displacement relationship of the post buckling behavior (Figure 15). 

 
 
6. CONCLUSIONS 
 
The VAEM has been developed based on the original AEM.  Elastic behavior of VAEM model was verified in 
this paper.  Compared to the original AEM, the advantages of the VAEM are: 
 
- The boundary, even very irregular one, domain is easier to fit. 
- Pre-existing joints or weaker and/or stronger zones in any direction can be modeled. 
- The model does not require numerical Poisson’s ratio (however Poisson’s ratio is limited from -1 to 0.33 in 

plain stress and -1 to 0.25 in plain strain). 
- Varying the element size is simply done. 
- Displacement solution is not depended of the element size 
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Figure 14 Beam geometry 
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Figure 15 Comparison of the large deformation analysis from numerical model and analytic solution 

(vor-dx: x-direction displacement from Voronoi mesh; vor-dy: y-direction displacement from Voronoi mesh; 
analytic-dx: x-direction displacement from analytic result; analytic-dy: y-direction displacement  

from analytic result) 
 
The VAEM was verified for predicting the behavior of plain and reinforced concrete.  In all cases, the obtained 
crack locations agree well with the experimental results.  In case of RC simulation, the diagonal crack obtained 
by VAEM was closer to experimental result than the original AEM because VAEM element boundary allows the 
crack to propagate closer to real crack. Moreover, because it consumes less energy to generate the shorter crack, 
VAEM result exhibits less maximum resistant compared to the AEM one.   
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