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ABSTRACT:

A method to develop a hierarchy of explicit recursion formulas for numerical simulation in irregular grids for
scalar wave equations is presented and then is used to construct the formulas for the one-dimensional case in
this paper. Numerical simulation of the one-dimensional scalar wave equation in a regular grid is discussed for
understanding its accuracy and stability, and an approach is then proposed to construct the stable formulas
which are of 2M-order of accuracy both in time and space with M being a positive integer and the recursion
formulas of the second order (M=1) and the fourth order (M=2) are given as an example. Theoretical results of
the method are demonstrated by a series of numerical tests.
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1. RECURSION FORMULAS AND SOLUTIONS OF THE INITIAL-VALUE PROBLEM

Our starting point is a concept that wave speed is finite. According to this concept we will first clarify the
relationship between the exact solution of an interior point of a finite homogeneous area within a short time
window and solution of the initial-value problem for an infinite homogeneous space in the section, and the
recursion formulas for an irregular grid are then derived by interpolation approximation. Assuming the wave
speed 1 is a constant in a finite spatial domain, the field of displacement and that of velocity satisfying a scalar
wave equation are denoted by u(x,t)and v(x,t) respectively, where x denotes a coordinate vector, and t

means time. If the displacement distribution function u(x,0)and the velocity distribution function v(x,0) are
known, we investigate u(0,At) and v(0,At) ata point B, which is assumed to be located at the coordinate
origin without losing generality. We assume that the shortest distance from P, to the boundary of the area is I,
the neighborhood of B, is defined as|x|£Ax, 0<Ax<I. Let At<Ax/c, the following judgments can be
drawn from the concept of finiteness of wave speed: u(0,4t) and v(0,At) are determined completely by
u(x,0) and v(x,0) on the interval |x|£Ax, and have nothing to do with the motion of all the other points
outside the neighborhood of P, as t=0 for their effects have not reached the pointP, at t=At. Therefore,
we can extend the neighborhood of B, with a constant speed to an infinite homogeneous space as far as

computing the motion of P, at an adjacent next time is concerned. So, it implies the motion of B, can be
computed using the solution of Cauchy problem and the form of the computing formulas are as follows:

u(0,At)=1J (u(x,O),v(x,O))

v(0,At) =13, (u(x,0),v(x,0)) (1.1)

Where the function u(x,O) and v(x,O) are defined on the interval |x| < CcAt, and the expressions of functional

J,(u(x,0),v(x,0)) can be derived from solutions of the Cauchy problem. The solutions are well known for
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the wave equations in 1-D, 2-D and 3-D cases, which are called as D'Alembert, Poisson and Kirchhoff
formula respectively ™; and J, (.,.) can be derived from J,(.,.) by differentiation with respect to time.

As far as the numerical simulation of wave equation in time domain is concerned, a continuous space is
required to be discretized via a grid and to construct the recursion formulas of the nodal points. If data of the

motion are known at the point P, and the adjacent nodal points when t=0, the distribution function u(x,0)
and v(x,O)in the neighborhood of P0(|x|§cAt) can be approximated in terms of these discrete data via

interpolation. Substituting these approximate distribution functions into Eqn. 1.1, a basic form of the recursion
formulas can be obtained.

2. THE BASIC RECURSION FORMULA FOR THE 1-D CASE

For the numerical simulation of the 1-D wave equation, the continuous X axis is discretized by a sequence of
spatial discrete points Pj with coordinate X=X ,J=0,£1,£2,--- . Point P, and the adjacent nodal points Pj,
j=%1---,.#M with M being a positive integer consist of a local system of nodal points and Fig.1shows the
case of M =2.

X X4 Xo Xi Xe
® ® ® ® ® X
p—e p1 po p1 pe

Figure 1  Schematic for a local system of nodal points in a 1-D irregular grid

Introducing the discrete time t, = pAt with p being an integer number, we define that
] 1p jrp

u? =u(x. t ) vy =Atv(x. t ) (2.1)

Applying the aforesaid method to the 1-D wave equation, the basic form of recursion formulas of a nodal point
for a 1-D irregular grid is obtained %

M M
p+l _ (P p p p
Ut =uf v+ 3 Gul+ D v
i=—M i=—M

(2.2)

+1 p N p N p

Vjp =V o+ Z Guj;+ Z ViVisi

i=—M i=—M
If the grid is regular, then X; = jAx, so Eqn.2.2 can be reduced to
M
ujp+1:ujp +V) +Z(§m (up,—2u) +upl ) +n, (v, —2v) +VP )

N (2.3)

M
V=V Y (L (Ul —2uP Ul ) 7, (VL —2vF VL))

] J+tm J+tm
m=1

After analyzing accuracy and Von- Neumann stability P! of Eqn.2.3, we found that the formulas are
of 2M +1-order of accuracy but unstable when coefficients &, ,7,,,7, and ¢, , respectively, satisfy the
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following four systems of equation
d 1 v AT?
d ==A7%, d =
mzﬂ Imé:m 2 2 ; Imnm 2(2|+1)
I=1--,M (2.4)

M=

M
dImé/m = IATZI’ Zdlmym :%ATZI
m=1

1

3
Il

Where d,, =m?, Ar=cAt/Ax. And we also found that the two systems of equation about coefficients &
and 7, guarantee the error terms of even and odd order in eu (truncation error of u) equal to zero up to the
order of 2M +1 respectively; so does the group of coefficients ¢ or y, for ev (truncation error of Vv); each
system of equation contains M equations numbered as |=1,---,M , and each equation in the system only

ensures the error term of the corresponding order equal to zero in the truncation error. For example, the 1th
equation in the system about 7, ensures the error term of the (2l +1)th order ineuequal to zero, while is not

related to the other lower-order terms; particularly, the last equation with the sequence number 1=M only
ensures the (2M +1)-order term in eu equal to zero, but has nothing to do with other error terms of order lower
than 2M +1. Therefore, Eqn.2.4 makes it possible to adjust the coefficients of the recursion formulas while
satisfying requirement to the lower order of accuracy. Thus if the last equation in the system about 7, is

eliminated, that is, if we abandon requirement of (2M +1)th order error term in eu equal to zero, any value
can be assigned to one of 7,---7,, .So, we propose an approach to construct stable recursion formulas of
2M -order in the next section.

3. AN APPROACH TO DEVELOP STABLE RECURSION FORMULAS OF 2M -ORDER FOR
THE REGULAR GRID

The order of accuracy of Eqn.2.3 depends on values of the coefficients& ., ¢ andy, , whether Eqn.2.3
satisfies the Von— Neumann stability condition depends on the values as well. Consequently, it is possible to
develop stable recursion formulas of 2M -order of accuracy by selecting values of & ., ¢ andy, reasonably.

m

There are several approaches to adjust the coefficients, and the one we propose is as following: values of
£ ¢ andy, (m=1---,M) are still solved by Eqn.2.4; new values 7, are assigned to 7, (m=1--,M).

Substituting 7, =7, into the second system of equations in Eqn.2.4 and abandoning the last one lead to

M . AT? .
d = ) I=1---M-1 3.1
n;z Im77m 2(2| +1) +771 ( )

The new values of 7,77, can be solved from Eqn.3.1 as functions of 7, . Let 7, = p,, where 7, is also
solved by Eqn.2.4, and p, is an adjustable parameter. If the value of 7, selected satisfies theVon — Neumann
stability condition via adjusting p,, Eqn.2.3 will be stable and of the 2M -order of accuracy as 7,,in Eqn.2.3 is
replaced by 7, .

Thus our problem now becomes to search values of p, which satisfy theVon — Neumann stability condition for a
given Az (0<Az<1). A region composed of all such values of p,is called as the stability region of p,, the
one in the region closest to 1 is denoted as p; , which is called the optimal value for the minimum loss of
accuracy as p, = p; .Substituting 7, = p;7, into Eqn.3.1,we can obtain the optimal coefficients 7, which make
Eqn.2.3 stable and of minimum accuracy loss with &, andy,, (m=1,--,M ) still solved by Eqn.2.4. As an
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example, the coefficients and the stability region of p, for the stable recursion formulas of the second order

(M =1) and the fourth order (M = 2) are given as follows:
M =1:

A7? - . AT? AT?
5 771:771:p1T1 51:A2-21 7127 (32)

&=

where p; =1.5forall Az e(0,1] ,and the stability region of p, shrinks to be a point p; = p, =1.5.

M=2:
_ *_p* 2A72_A14 B *_E Arz_p* 2A1'2_A14
m=n=h 9 30 J 772—’72—4 6 A 30

At*  2A7? At AT? (3.3)
= =__+_, = - , . .
e R R i YRy
2A7Y  AAT? ATt AL?
= — + s -
& 3 3 s 6 12

Table 1 Part of the numerical results of p; versus Ar
At 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p; 1.220 1221 1223 1227 1232 1239 1250 1265 1.288 45/34

*

1

oL
0.01 0.2 0.4 AT 0.6 0.8 1.0

Figure 2 The stability region of J; and p: versus AT

Figure 2 shows the stability region of p, (the shadow part) searched numerically within the range p, € [0,3].

4. Numerical tests

Considering a Cauchy problem for the 1-D wave equation with wave speed ¢=500m/s, v(x,0)=0,u(x,0)is
a cubic B spline function (See Eqn. 135, P281 in [4]), whose non-zero part are located on the interval x €[0,25m].

A series of numerical tests for different values of AzandAx are carried out to verify the results presented in
this paper, and the main results are as follows:
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4.1. Stability Verification

The numerical results indicate that Eqn.2.3 with a value of p, in the stability region is stable, otherwise it’s not.
For example, Figure 3 shows the time histories of displacement (ug) and velocity (v} /At) at x=0 for the
initial period te[0,0.065] with Ar=1 Ax=0.5m, At=0.001s. The value of p; equals /4 and 45/34

for the stable recursion formulas of the second order and that of the fourth order, respectively, while p, =1 for

the unstable formula. Figure 3 indicates clearly that the instability phenomena occur quickly in the numerical
results for the unstable scheme; meanwhile, the numerical results for the stable formula match the exact solution
very well.
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Figure 3 Comparison between the stable and the unstable recursion formulas

4.2. Accuracy Verification
Let u(x,0) be a cubic B spine function and Az =1, Ax=0.5m, At=0.001s. Figure 4 shows the waveforms

of displacement (uf) and velocity (vf /At) at t=0.05sand at this time the initial disturbance has propagated

25m to the left and the right respectively. It can be seen from the figure that the numerical solutions of the
stable recursion formulas of the second and fourth order are very close to the exact solution. In order to observe
effects of the accuracy order on errors of the numerical solutions, the error function of displacement
ou(j, p,Ar) and that of velocity ov(j,p,Az) are defined by

ou(j, p,Ar)=u] —u(jAx, pAt)

, 0<j<J, p=0 4. 1)
ov(], p,At) =V] — Atv(jAX, pAt)
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The error norm of displacement|suf,and that of velocity |[5v|, are introduced to evaluate the numerical
accuracy of the whole waveform at t = pAt,

|oul, :\/Z(5u(j, p,A7))’
o (4.2)

Jov], = \/z (5v(j, p. A7)

Where the value of J should cover all nodal points whose motion data was used by Eqn.2.3 till the given timet .
The error norms are computed by Eqn.4.2 for each value of A7 for Ar=0.01n, n=1,--,100.Figure 5 shows
the change of ||5u|,and||ov],versus Arat t=0.05s. It can be seen from it that the error norm of the fourth

order formula is considerably smaller than that of the second order one for almost the entire interval Az € (0,1].
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Figure 4 The waveform of displacement and velocity at t =0.05s
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Figure 5 The error norm of displacement |su|, and the error norm of velocity |5v],
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Finally we design three schemes with Az =0.5to reveal the relationship between the order of accuracy and the
computational efficiency: (1) the second order stable formula with Ax =0.5mand At =0.0005s ; (2) the fourth
order stable formula with Ax=1.0m and At=0.001s ; (3) the second order stable formula
with Ax =1.0m and At =0.001s .Figure 6 shows the error 6u(0, p,0.5) and oVv(0, p,0.5)/At ,where the two

groups of data have been normalized by the maximum of the exact solution of displacement and velocity,
respectively. It shows that error of the scheme (2) shares the same order of magnitude as that of the scheme (1),
and both of them are considerably smaller than error of the scheme (3). This indicates that the fourth order
scheme has almost the same numerical accuracy as the second order stable one though the time step and space
step of the former is one time larger than those of the latter. It means that the improvement of the order of
accuracy can not only make the numerical simulation more accurate, but also improve computation efficiency
for same precision.
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Figure 6 Comparison between the recursion formulas with different order of accuracy and different gird size
(Ar = 0.5)

5. CONCLUSION

The paper presents a method to develop the recursion formula which is explicit, time-space decoupling, highly
accurate, stable and single-step for numerical simulation of wave equation in irregular grids and in time domain,
according to the concept of wave speed being finite; and demonstrates the feasibility for the method via 1-D
model. Having noticed the well-known solutions for the 2-D and 3-D Cauchy problem, the method can be
applied to constructing the recursion formula for multidimensional irregular grids. We have generalized this
method to the 2-D model, and the generalization to the 3-D case is in progress. And the method is suitable for
the numerical simulation in a space domain where wave speed varies smoothly with spatial coordinates as long
as the wave speed in the recursion formula takes a value of that at a nodal point under consideration;
furthermore, the method can be applied to developing the recursion formula of nodal points on an interface
where an abrupt change in wave speed occurs if the solution of initial-value problems for the homogeneous
infinite spatial domain is extended to that for an infinite spatial domain with the abrupt interface. Besides, the
ideas and the approaches presented in the paper have certain reference to improving techniques for the
numerical simulation of electromagnetic and elastic wave equations. The above generalization is possible as
shown by some work we have done, the related research results will be presented in forthcoming papers.
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