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ABSTRACT: 
A method to develop a hierarchy of explicit recursion formulas for numerical simulation in irregular grids for 
scalar wave equations is presented and then is used to construct the formulas for the one-dimensional case in 
this paper. Numerical simulation of the one-dimensional scalar wave equation in a regular grid is discussed for 
understanding its accuracy and stability, and an approach is then proposed to construct the stable formulas 
which are of 2M-order of accuracy both in time and space with M being a positive integer and the recursion 
formulas of the second order (M=1) and the fourth order (M=2) are given as an example. Theoretical results of 
the method are demonstrated by a series of numerical tests. 
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1. RECURSION FORMULAS AND SOLUTIONS OF THE INITIAL-VALUE PROBLEM  
 
Our starting point is a concept that wave speed is finite. According to this concept we will first clarify the 
relationship between the exact solution of an interior point of a finite homogeneous area within a short time 
window and solution of the initial-value problem for an infinite homogeneous space in the section, and the 
recursion formulas for an irregular grid are then derived by interpolation approximation. Assuming the wave 
speed 1 is a constant in a finite spatial domain, the field of displacement and that of velocity satisfying a scalar 
wave equation are denoted by and  respectively, where ( , )u x t ( , )v x t x  denotes a coordinate vector, and  
means time. If the displacement distribution function and the velocity distribution function  are 
known, we investigate 

t
( ,0)u x ( ,0)v x

(0, )u t∆  and (0, )v t∆  at a point  which is assumed to be located at the coordinate 
origin without losing generality. We assume that the shortest distance from  to the boundary of the area is , 
the neighborhood of  is defined as

0P

0P l

0P x x≤ ∆ ， 0 x l< ∆ ≤ . Let t x c∆ ≤ ∆ ，the following judgments can be 
drawn from the concept of finiteness of wave speed: (0 )u , t∆  and (0, )v t∆  are determined completely by 

 and  on the interval ( ,0)u x ( ,0)v x x≤ ∆x , and have nothing to do with the motion of all the other points 
outside the neighborhood of  as  for their effects have not reached the point  at t . Therefore, 
we can extend the neighborhood of  with a constant speed to an infinite homogeneous space as far as 
computing the motion of  at an adjacent next time is concerned. So, it implies the motion of  can be 
computed using the solution of Cauchy problem and the form of the computing formulas are as follows: 

0P 0t = 0P t= ∆

0P

0P 0P
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                               (1.1) 

 
Where the function and ( 0u ,x ( )0v ,x are defined on the interval c t≤ ∆x , and the expressions of functional 

( ) ( )( )0 0uJ u , ,v ,x x  can be derived from solutions of the Cauchy problem. The solutions are well known for 
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the wave equations in 1-D, 2-D and 3-D cases, which are called as D Alembert′ , Poisson  and Kirchhoff  

formula respectively [1]; and ( )vJ .,.  can be derived from ( )uJ .,.  by diff
 

As far as the numerical sim  wave equation i  domain is concerned, a continuous spa

erentiation with respect to time.  

ulation of ce is n time
required to be discretized via a grid and to construct the recursion formulas of the nodal points. If data of the 
motion are known at the point 0P  and the adjacent nodal points when 0t = , the distribution function ( )0u ,x  
and ( )0v ,x in the neighborhood of 0P ( c t≤ ∆x ) can be approximat  terms of these discrete data via 
interp . Substituting these appro m ibution functions into Eqn. 1.1, a basic form of the recursion 
formulas can be obtained.  
 

ed in
olation xi ate distr

. THE BASIC RECURSION FORMULA FOR THE 1-D CASE 

s 

 
2
 

or the numerical simulation of the 1-D wave equation, the continuouF x  axis is discretized by a sequence of 
spatial discrete points jP with coordinate 0 1 2jx x , j , , ,= = ± ±  . Point 0P  and the adjacent nodal points jP , 

1j , , M= ± ±  with M being a positive i cal system of nodal points and Fig.1shows the nteger consist of a lo  
case of 2M = .       
               

x
x x xxx

p p p p p
 

 
   Figure 1  Schematic for a local system of nodal points in a 1-D irregular grid  

Introducing the
 

 discrete time t p t= ∆  with p being an integer number, we define that  p

 
                           ( ) ( ), ,    ,p p

j j p j j pu u x t v tv x t= = ∆                           (2.1) 

 
Applying the aforesaid method to the 1-D wave equation, the basic form of recursion formulas of a nodal point 

[2] for a 1-D irregular grid is obtained 
 

1

1=
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∑ ∑
                       (2.2) 

 
If the grid is regular, then jx j x= ∆ , so Eqn.2.2 can be reduced to 

)+

          (2.3) 

 
After analyzing accuracy and stability [3] of Eqn.2.3, we found that the formulas are 
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Von - Neumann
of 2 1M + -order of accuracy but n coefficients , ,m m m unstable whe ξ η γ  and mζ , respectively, satisfy the 
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following four systems of equation 
 

M M

( )
2

2

1 1

2 2

2 1

1 1

1 ,       
2 2

1,       
2

l
l

lm m lm m
m m

M M
l l

lm m lm m
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d d
l

d l d
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ζ τ γ τ

= =

= =

∆
= ∆ =

+

= ∆ = ∆

∑ ∑

∑ ∑
    1l , ,M=              (2.4) 

 
Where 2l

lmd m= , /c t xτ∆ = ∆ ∆ . And we also found that the two systems of equation about coefficients mξ  
and mη  guarantee the error term thes of even and odd order in eu (truncation error of u ) equal to zero up to  
order of 2 1M +  respectively; so does the group of coefficien mts ζ or mγ for ev (truncation error of v ); each 
system o on contains f equati M  equations numbered as 1l , ,M= , and each equation in the system only 
ensures the error term of the corresponding order equal to zero in the truncation error. For example, the l th 
equation in the system about mη  ensures the error term of the ( 2 1l + )th order in eu equal to zero, while is not 
related to the other lower-ord terms; particularly, the last equation with the se ence number l Mer qu =  only 
ensures the ( 2 1M + )-order term in eu equal to zero, but has nothing to do with other error terms of order lower 
than 2 1M + fore, Eqn.2.4 makes it possible to adjust the coefficients of the recursion formulas while 
satisfy quirement to the lower order of accuracy. Thus if the last equation in the system about m

. There
ing re η is 

eliminated, that is, if we abandon requirement of ( 2 1M + )th order error term in eu  equal to zero, any value 
can be assigned to one of 1 Mη η， .So, we propose an approach to construct stable recursion formulas of 
2M -order in the next section. 
 

. AN APPROACH TO DEVELOP STABLE RECURSION FORMULAS OF 
 
3 2M -ORDER FOR 

he pends on values of the coefficients

THE REGULAR GRID  
 

 order of accuracy of Eqn.2.3 deT m m, m,ξ η ζ and mγ , whether Eqn.2.3 
satisfies the Von Neumann−  stability condition depends on the values as well. Consequently, it is possible to 
develop stabl ulas of 2e recursion form M -order of accuracy by selecting values of m m, m,ξ η ζ and mγ  reasonably. 
There are several approaches to adj he coefficients, and the one we propose is as following: values of 

m m,
ust t

ξ ζ and mγ  ( 1m , ,M= ) are still solved by Eqn.2.4; new values *
mη  are assigned to mη ( 1m , ,M= ). 

utin mSubstit g *
mη η=  into the second system of equations in Eqn.2.4 and andoning the last o  l

 
 ab ne ead to 

( )
2

* *
1

2 2 2 1

lM

lm m
m

d
l
τη η

=

∆
= +

+∑ ，   1 1l , ,M= −                  (3.1) 

 
The new values of 2

* *
Mη η can be solved from Eqn.3.1 as functions of 1

*η . Let 11 1
* pη η= , where 1η  is also 

nd solved by Eqn.2.4, a 1p  is an adjustable parameter. If the value of 1
*η  theVon umannselected satisfies Ne−  

stability condition via adjusting 1p , Eqn.2.3 will be stable and of the 2M -order of accuracy as mη in Eqn.2.3 is 
replaced by *

mη . 
 
Thus our problem now becomes to search values of 1p which satisfy theVon Neumann− stability condition for a 
given τ∆ ( 0 1τ< ∆ ≤ ). A region composed of all such values of 1p is ability region of 1called as the st p , the 
one in the region closest to 1 is denoted as *

1p , which is called the optimal value for the minimum loss of 
accuracy as *

1 1p p= .Substituting 1 1 1
* *pη η= into qn.3.1,we can obtain the optimal coefficients *

m E η  which make 
Eqn.2.3 stab of minimum a ss with m m,le and ccuracy lo ξ ζ and mγ  ( 1m , ,M= ) still solved by qn.2.4. As an  E
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example, the coefficients and the stability region of 1p fo  s e recursionr the tabl  formulas of the second order 
( 1M = ) and the fourth order ( 2M = ) are given as follows: 

1M  

1 1,   τ τ τξ η η ζ τ γ∆ ∆ ∆2 2
* * 2

2

1 1 1 1,     ,     
2 6 2

p= = = = ∆ =                        (3.2) 

 
where 1 1 5*p .= for all ( ]0,1τ 1p shrinks to be a point 1 1 1 5*p p .= = .  

2M =
∈ ,and the stability region of∆

: 
 

1

2 4 2 2 4
* * * *

1 1 2 2 1

4 2 4 2

1 1 2 2

4 2 4 2

1 2
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9 30 4 6 9 30
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6 3 24 24

2 4 ,       
3 3 6 12

p pτ τ τ τ τη η η η

τ τ τ τξ γ ξ γ

τ τ τ τζ ζ

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞∆ ∆ ∆ ∆ ∆
= = − = = − −⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠

⎪ ∆ ∆ ∆ ∆⎪ = = − + = = −⎨
⎪
⎪ ∆ ∆ ∆ ∆

= − + = −⎪
⎪⎩

，

           .         (3.3) 

 
Table 1 Part of the numerical results of *

1p  versus τ∆  

0.2 0.3 0.4 0.5 0.6 0.7 8 τ∆  

*
1p  1.22 1.22 1 1.23 1 1.25 1  1.28 45/340 1 1.223 .227 2 .239 0 .265 8 

0.1 0. 0.9 1.0 

 

0.2 0.4 0.6 0.8 1.0
0

1

2
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 1p
*
1p

τ∆

  

45/34

0.01

 stability region

 
Figure 2  The stability region of 1p and 1

*p  versus τ∆  

Figure 2 shows the stability region of p  (the shadow part) searched numerically th1 [ ]1 0,3p ∈ .  

4. Numerical tests 

n  problem for the 1-D wave equation with wave speed 

 
 wi in the range

 

 
o sidering a CauchyC 500 /c m s= , ( ,0) 0v x = , ( ,0)u x is 

cated on the terval a cubic B spline function (See Eqn. 135, P281 in [4]), whose non-zero part are lo  in [ ]0,25x m∈ . 
A series of numerical tests for different values of τ∆ and x∆  are carried out to verify the results n 
this paper, and the main results are as follows: 
 

 presented i
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.1. Stability Verification  
2.3 with a value of 

4
The numerical results indicate that Eqn. 1p in the stability region is stable, otherwise it’s not. 
For example, Figure 3 shows the time histories of displacement ( 0

pu ) and velocity ( 0 /pv t∆ ) at 0x =  for the 
initial period [ ]0,0.06t s∈  with 1,τ∆ =  0.5 ,  0.001x m t s∆ = ∆ = . The value of *

1p  s equal 1 4   and 45 34  
for the stable re ulas of c he fourth order, respectively, ile 1pcursion form  the se ond order and that of t wh 1=  for 

nume

Figure 3  Comparison between the sta le and the unstable recursion formulas 

4.2.  Accuracy Verification  
e function and 

the unstable formula. Figure 3 indicates clearly that the instability phenomena occur quickly in the rical 
results for the unstable scheme; meanwhile, the numerical results for the stable formula match the exact solution 
very well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
-0

 
 -0

 
 
 
b
 

Let ( ,0)u x  be a cubic B spin 1,τ∆ = 0.5 ,  0.001x m t s∆ = ∆ = . Figure 4 shows the waveforms 
of displacement ( )p

ju  and velocity ( )/p
jv t∆  at s 0 05t .= and at this time the 

and  It can be see

initial disturbance has propagated 

25m  to the left the right respe n from the figure that the numerical solutions of the 
e recursion formulas of the second and fourth order are very close to the exact solution. In order to observe 

effects of the accuracy order on errors of the numerical solutions, the error function of displacement 
( , , )u j p

ctively.
stabl

δ τ∆  and that of velocity ( , , )v j pδ τ∆  are defined by 
 

                 
( , , ) ( , )

p
j

p
j

u j p u u j x p

v j p v tv j x p t

δ τ

δ τ

∆ = − ∆ ∆

∆ = − ∆ ∆ ∆
，

( , , ) ( ,
0 ,     0j J p≤ ≤ ≥

)t
                  (4. 1) 
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The error norm of displacement

2
uδ and that of velocity

2
vδ  are introduced to evaluate the numerical 

 =

                            

accuracy of the whole waveform at p t∆ ,  
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(b) velocity wave form
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J should cover all nodal points whose motion data was used by Eqn.2.3 till the given time . 
 c

t
The error norms are omputed by Eqn.4.2 for each value of τ∆  for 0 01   1 100. n, n , ,τ∆ = = .Figure 5 show  
the change of 

s

2
uδ and

2
vδ versus τ∆ at 0 05t . s= . It can  seen rm of the fourth 

order formula is considerably smaller  th second order one for almost the entire interval

 be from it that the error no

than at of the ( ]0 1,τ∆ ∈ . 
 
 
 
 
 
 
  

 

Figure 4  The waveform of displacement and velocity at s
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Finally we design three schemes with τ∆ = 0.5 to reveal the relationship between the order of accuracy and the 
computational efficiency: (1) the second order stable formula with 0.5x m∆ = and 0.0005t s∆ = ; (2) the fourth 
order stable formula with 1.0x m∆ = and 0.001t s∆ = ; (3 table formula 
with 1.0

) the second order s
x m∆ = and 0.001t s∆ = .Figu (0, ,0.5)pre 6 shows the error uδ  and (0, ,0.5) /v p tδ ∆ ,where the two 

group  hav malized by the maximum of solution nt and velocity, 
respectively. It shows that error of the scheme (2) shares the same order of magnitude as that of the scheme (1), 
and both of them are considerably smaller than error of the scheme (3). This indicates that the fourth order 
scheme has almost the same numerical accuracy as the second order stable one though the time step and space 
step of the former is one time larger than those of the latter. It means that the improvement of the order of 
accuracy can not only make the numerical simulation more accurate, but also improve computation efficiency 
for same precision. 
 

s of data e been nor  the exact  of displaceme

e Figure 6  Comparison between the recursion formulas with different order of accuracy and different gird siz
( )τ∆ = 0.5  

 

. CONCLUSION   

he paper presents a method to develop the recursion formula which is explicit, time-space decoupling, highly 
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T
accurate, stable and single-step for numerical simulation of wave equation in irregular grids and in time domain, 
according to the concept of wave speed being finite; and demonstrates the feasibility for the method via 1-D 
model. Having noticed the well-known solutions for the 2-D and 3-D Cauchy problem, the method can be 
applied to constructing the recursion formula for multidimensional irregular grids. We have generalized this 
method to the 2-D model, and the generalization to the 3-D case is in progress. And the method is suitable for 
the numerical simulation in a space domain where wave speed varies smoothly with spatial coordinates as long 
as the wave speed in the recursion formula takes a value of that at a nodal point under consideration; 
furthermore, the method can be applied to developing the recursion formula of nodal points on an interface 
where an abrupt change in wave speed occurs if the solution of initial-value problems for the homogeneous 
infinite spatial domain is extended to that for an infinite spatial domain with the abrupt interface. Besides, the 
ideas and the approaches presented in the paper have certain reference to improving techniques for the 
numerical simulation of electromagnetic and elastic wave equations. The above generalization is possible as 
shown by some work we have done, the related research results will be presented in forthcoming papers. 
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