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ABSTRACT 
Based on Biot dynamic theory, an explicit finite element method for dynamic analysis of the fluid saturated 
porous media was proposed considering of the coupling massρa. The formula of the explicit finite element 
method was developed, and the corresponding calculation procedure and some results were presented in this 
paper. The excellent characteristics of the method are that the global stiffness matrix does not need to be 
assembled and the linear equations do not need to be solved. So the computational effort and memory 
requirement can be reduced considerably. Compared with the analytic solution, the results were in a good 
conformity with it, which indicated that the method presented in this paper was an effective method to deal with 
the dynamic problems of saturated porous media. The effects of coupling massρa on the displacements of liquid 
and solid phase were also analyzed, and the results showed that the coupling mass had obvious effects on the 
displacements of liquid phase, but not obvious on the solid phase�s displacements. 
KEYWORDS: Fluid saturated porous media; Explicit finite element method; Boit dynamic equation; Coupling 
massρa 

1.  INTRODUCTION 

How to solve and analyze the dynamic response of a structure in the earth and a site with saturated porous 
media is important in earthquake engineering and soil dynamics. Biot [1] (1956) developed the propagation 
theory of elastic waves in fluid-saturated porous media. Biot�s work is a milestone that sets the foundation to 
solve and analyze the mentioned-above problems. Complicated equations given in Biot dynamic theory can be 
solved by analytical methods only with some simple boundary conditions. Most dynamic problems in 
fluid-saturated porous media are solved using numerical methods, especially using finite element methods. 
Ghaboussi et al [2], Zienkiewicz et al [3, 4], Prevost[5], Aubry[6], Yuan et al [7] and others have developed the finite 
element methods applied to the dynamic problems in fluid-saturated porous media. If the implicit finite element 
methods are used in the time domain, there is a disadvantage in them, which require dividing time into time 
steps and solving a set of linear equations within each time step. These methods are quite suitable when 
problems are with a few degrees of freedom. For problems with a large number of degrees of freedom, the 
computational effort and memory requirement will be increased enormously, so the application of these methods 
to practical problems is limited. To overcome the disadvantage of these methods, an explicit finite element 
method for Biot dynamic formulation in fluid-saturated porous media is developed by Z.Chenggang et al [8, 9]. 
The excellent characteristics of the method are that the global stiffness matrix does not need to be assembled 
and the linear equations do not need to be solved, so the computational effort and memory requirement can be 
reduced considerably. But the method does not consider the effect of the coupling massρa in Biot dynamic 
theory. In this paper, the method [8] was further developed, and the new formula are produced in which the effect 
of the coupling massρa is considered. The excellent characteristics of the above mentioned method [8] are kept. 
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The corresponding calculation procedures and some results were presented. Compared with the analytic solution, 
the results were in a good conformity with it, which indicated that the method presented in this paper was an 
effective method to deal with the dynamic problems of saturated porous media. The effects of coupling massρa 
on the displacements of liquid and solid phase were also analyzed, and the results showed that the coupling 
mass had obvious effects on the displacements of liquid phase, but not obvious on the displacements of solid 
phase. 

2. ESTABLISHMENT OF EXPLICIT FINITE ELEMENT EQUATIONS 

The dynamic equations for fluid saturated porous media established by Biot[1] can be given by aligned matrix.  
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With u and U are the displacements of solid phase and liquid phase respectively, aρρρ += 111 ; aρρρ += 222 ; 

aρρ −=12 ; and sn ρρ )1(1 −= ; fnρρ =2 , sρ is the density of solid mass, fρ is the density of  liquid mass, aρ  
is the density of coupled-mass between solid phase and liquid phase. The coefficient b is relative to permeability, 
b=ζn2/k; ζ represents the coefficient of fluid viscosity, n represents porosity, and k represents the coefficient of 
permeability. N and A are similar to Lame constants µ and λ in elastic theory.  R and Q are obtained by 
experiments. Biot presented all above parameters in detail. 

2.1 Establishment of the aligned finite equation 
According to the Ref [4,8], the Galerkin weak form of the dynamic equation could be directly given by matrix 
form as follows (where,ρ12≠0). 
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Where, [N] is the shape function of the element; { }eu , { }eU  and { }
euf , { }

eUf represent the nodal displacements 

and the nodal forces of solid and liquid phases in the element e respectively. 

2.2 Meshing 
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The plane area Ω is divided into m linear quadrilateral elements and k nodes altogether. The displacements and 
boundary force of solid and liquid phase of 4 nodes in element e can be described as follows:  
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Where, ixu , iyu , ixU  and iyU  are lateral and longitudinal displacements of solid and liquid phase of node i 

in element e, respectively, and 
ixuf , 

iyuf , 
ixUf  and 

iyUf  are the lateral and longitudinal boundary force of 

solid and liquid phase of node i in element e, respectively. 
The physical quantities of a certain node can be expressed by that of the adjacent notes, namely only the 
adjacent nodes have effects on it. �L� represents the influence of various elements on node i, only four elements� 
calculation results are provided because only they enclose the node i and have effects on it. �j�  represents the 
influence of 4 nodes in one element, shown as Fig. 1. 

2.3 Discrete equations and decoupling technique 
Accuracy of numerical simulation on wave problems requires that the size of finite element should be small 
enough comparing with wavelength, so the inertia force in every element change little, and they are assumed 
constant in the same element, then the acceleration of the element can be assumed constant, namely it is equal to 

the nodal acceleration ( i
e
j uu &&&& = ), therefore mass matrix can be decoupled and Eq.2 can be turned into the 

following form:  
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Fig. 1 The local nodes system
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in which, xT~  and yT~  are the lateral and longitudinal distributing force of solid phase in L element boundary, 
respectively; p is the boundary pore water pressure.  

2.4 Dynamic response expressions of internal nodes 
When finite element method is used to deal with an infinite extent question, artificial boundaries have to be 
introduced, so the nodes in finite element grids should be divided into artificial boundary nodes and internal 
nodes. The dynamic response expressions of artificial boundary nodes can be represented by those of the 
internal nodes and input movement, which will be stated later (see artificial boundary). 
The motion equations of inside nodes can be gained as follows according to Eq. (2.4), where ∆t is the time step, 
p is amount of steps. 
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Through central difference method in time domain, we get the following equations: 
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Where { }qiW , { }qiW&  and { }qiW&& represent the displacement, velocity and acceleration of the node i at the time step 

q respectively. For simplifying expression, W=u, U；q=p-1, p , p +1, q and p all present time steps. 
The assumption for New-mark constant average acceleration method is given as follows: 
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Introducing the expression of Eq. (2.6)-(2.8) into Eq. (2.5), we can obtain: 
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The expression for acceleration can be obtained from Eq. (2.8): 
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Therefore, according to Eqns. (2.9)-(2.13), the dynamic response of a certain time can be obtained through the 
response of former time.  

3 . ARTIFICIAL BOUNDARY 

There are three types of wave (PI; PII and S waves) in a fluid-saturated porous media according to Biot dynamic 
theory. Each type of wave propagates at an inherent velocity, That is to say, (such as PΙ wave) for a specific type of 
wave no matter it is solid or liquid phase, both of them propagate at the same velocity to the same direction, but there 
is a fixed relationship between them. Based on the transmitting artificial boundary theory [10], we postulate that the 
propagation of both solid and liquid phase passes through artificial boundaries at the same velocity to the same 
direction. So we use transmitting artificial boundary formulae to both solid and liquid phase separately, and in this 
way the scattering wave fields of both solid and liquid phase along artificial boundary nodes can be calculated.  

4. CALCULATION PROCEDURES 

The calculation procedure of dynamic response utilizing explicit finite element method is established by this 
paper can be summarized as follows: 
1) Introducing the artificial boundary and providing calculation area.  
2) Inputting initial displacement field or the initial applied force field. 
3) Dividing the area into finite element mesh, the continuum area will be replaced with the finite element node 
system. 
4) Preparation for calculation 
� Forming the mass concentrated on every node; 
� Forming calculation rigidity and damping in every node;  
� Letting the nodal displacement of p=0 and several moments before p =0 be zero. 
5) Calculating the node external forces in time step p and p +1. 
6) Calculating the dynamic response in time step p +1 
� Calculating dynamic response displacements for every internal nodes at t +∆t (in the time step p+1) by using 
Eq.12 and Eq.13, and combing us=u-uI (uI is the incidence displacement field)，one can get the artificial 
boundary scattering displacement field and calculate the scattering displacement in time step p+1 at the artificial 
boundary, then utilizing ｕ=us+uI  one can obtain the total displacement field at the artificial boundary.  
�It is by means of Eq.14 and Eq. 15 that the speed response can be calculated at the t +∆t (in the time step p+1) 
for every internal nodes, the same as procedure � of step 6) one can obtain the total velocity field at the 
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artificial boundary. 
�Calculating the acceleration response of every internal nodes at t +∆t (in the time step p+1) with the Eq. 15, 
the same as the procedure � of step 6) one can obtain the total velocity field at artificial boundary.  
7) Circulation steps 5) and 6) can be used to calculate the dynamic response of all the nodes at different time on 
the computational gridding. 

5.  EXAMPLES 

Example 1 
An explicit finite element method for dynamic analysis of fluid saturated porous media was presented 

above, now the corresponding procedure are worked out by using the formula deduced above and the instance 
analysis are carried on. 

In order to prove the accuracy of the method presented in this paper, the dynamic response of the system 
shown in Fig. 2 is calculate by both the analytic method according to Ref [12] and the method present in this 
paper. In Fig.2, the analytic models and the situation after utilizing the method of this paper to introduce the 
artificial boundary are illustrated (Meshing is not needed for analytic model), the lateral and vertical calculated 
ranges of the model both are 200m, the interval ∆x and vertical interval ∆y are 2.5m respectively, the model is 
divided into 6400 units and 6561 nodes altogether, the node loads P=1 are exerted on the mid point of the free 
surface, the free surface can be permeable or impermeable. When the free surface is permeable, the pore water 
pressure on it is zero, and when the free surface is impermeable, the vertical displacements of the solid phase 
and that of the liquid phase on it are equal. In this example, the permeable surface condition is discussed. The 
material characteristic parameter is presented in Table 1. The 
numerical results and analytic solutions are compared as 
follow. 

When the free surface is permeable, the numerical 
solution and analytic solution of the solid phase displacements 
of point B with aρ =0.0877×104 are presented in Fig.3[0], with 

/t kτ ρ=  ( ρ  is the total density of fluid saturated porous 
media, k  is permeability coefficient) being the horizontal axis, 
and / cu kVξ ρ= ( Vc is dilatational wave velocity of fluid 
saturated porous media without relative motion between fluid 
and solid)being the vertical axis, respectively. From Fig.3 we 
can find out that they are in good coincidence, which indicate 
that the method presented in this paper has satisfied accuracy.  

In order to discuss the effect of coupling mass aρ on 
solid phase, the dimensionless solid phase displacement 
( / cu kVξ ρ= ) of point B calculated by the analytical solution 
and the numerical solution at aρ =0 and aρ �0 are displayed in Fig.4 and Fig.5 respectively. From Fig.4 and 

O 

B

x

y 

Artificial 

boundary

200

200

Fig. 2 The finite element model of 
example 1 

Artificial 

boundary

Table 1  Basic Material Properties (SI) 
 

A N n sρ  fρ  ρ  aρ  Q R k 

1.902 
×107 

2.746 
×107 

0.467 4652 1346 3060 877 
1.02 
×107 

0.793 
×107 

1.888 
×10-12 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
Fig.5 we can see, the effect of aρ  on solid phase is very small when the free surface is permeable. Because 
there is no solution of liquid phase displacements in the analytical method offered by Ref [12], this paper 
discusses the effect of coupling mass aρ  on liquid phase displacements. Figure 6 presents for the 
dimensionless liquid phase displacements / cU kVη ρ=  of the point B calculated with method presented in this 
paper versus /t kτ ρ= also with the free surface permeable. From Fig.6, we can obtain that at the initial stage the 
liquid displacements of aρ =0.0877×104 is relatively larger than that of aρ =0 when the free surface is 
permeable. With the growth ofτ , the two kind of the liquid phase displacements tend to unanimity gradually, 
the effects of aρ  are reduced accordingly.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 2 
The second example analyzed by the method presented in this paper is a rigid foundation with width 10m, 

on which is exerted a load 0 sinP tσ ω= , as shown in Fig.7. The effect of the load frequency f and coupling mass 

aρ  on the dynamic responses of fluid saturated porous media is discussed now. The interface between the free 
surface of fluid saturated porous media and the contact face of rigid foundation should satisfy the following 
conditions: 1. The vertical displacements of each point on the contact surface of rigid foundation and the 

displacements of solid phase and liquid phase in each contact point are equal, namely y yu U= .2. Without 

considering sliding of interface, so the displacements of solid phase at contact points are zero in horizontal 
direction, namely 0xu = .And the surface of the saturated porous media beyond the rigid foundation is assumed 
permeable. 
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Fig. 4 Effect of coupling mass on solid phase 

displacement calculated by the analytical solution 
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Fig. 3 Comparison of the solid phase displacement 

calculated by the analytical method with that calculated by 
numerical method 
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Fig.6 Effect of coupling mass on liquid phase displacement 

calculated by the numerical method 
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Fig. 5 Effect of coupling mass on solid phase 

displacement calculated by the numerical method
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From Fig. 8 ~10, taking /t kτ ρ=  as the x-axis and 
/ cu kVξ ρ=  as y-axis, the effects of coupling mass aρ  on 

the vertical solid displacement of point A under three 
different frequencies f=1Hz, 2Hz,and 10Hz were presented. 
From these figures, we can see that the effects of the 
coupling mass aρ  on the vertical solid displacement are 
very small, and the vertical solid displacement of aρ =0, is 
more than that of aρ =0.0877×104. 

Fig. 11 ~ 14 presented the effects of aρ  on the solid 
phase and liquid phase displacement at point B, C, D and E 
with frequency f =1Hz. In these figures, the y-axis are also 
the dimensionless displacement ( / cu kVξ ρ=  
or / cU kVη ρ= ). We can know from Fig. 11 ~14, it is same 
as example 1, aρ  has not obvious effect on the 
displacements of the solid phase and has great effect on the 
displacements of the liquid phase. But there is a great 
difference form the example 1, the displacement of the 
liquid phase when aρ =0 is obviously greater than that when 

aρ =0.0877×104, while in example 1 the displacement of the 
liquid phase when aρ =0 is obviously smaller than that when aρ =0.0877×104. This must be because the rigid 
contact face leads to that the surface of the saturated porous medium contact with the rigid foundation can be 
partly seemed as impermeable boundary. The effects of aρ on the dynamic response of the saturated porous 
medium when the free surface is impermeable will be discussed next.  
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Fig. 10 Effect of coupling mass on the solid phase displacement of point A (f=10Hz) 

Fig.7 The finite element model of example 2 
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Fig. 8 Effect of coupling mass on the solid phase 

displacement of point A (f=1Hz) 
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Fig. 9 Effect of coupling mass on the solid phase 

displacement of point A (f=2Hz) 
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Fig. 13 Effect of coupling mass on the solid phase and liquid phase displacement of point D respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Example 3 
The above two examples are all assumed that the free surface is permeable -boundary, namely in free boundary 
(y =0), the pore water pressure is zero. Next, we will study the effect of coupling mass on the dynamic responses 
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 Fig. 11 Effect of coupling mass on the solid phase and liquid phase displacement of point B respectively 
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Fig. 12 Effect of coupling mass on the solid phase and liquid phase displacement of point C respectively 
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Fig. 14 Effect of coupling mass on the solid phase and liquid phase displacement of point E respectively 
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of the saturated porous medium when the free surface is impermeable-boundary. The computational model 
adopted is the same as example 1 and the vertical concentrated staircase loads are applied in origin of coordinate. 
Because of the impermeable free surface, in origin of the coordinate, the stress on the solid skeleton should be 
1-n, the pore water pressure is n (n is porosity), and on the surface, the vertical solid phase and lateral 
displacements are equal. Fig. 15 and Fig. 16 show the effect of coupling mass aρ on solid phase and liquid phase 
displacement of point B when the free surface is the impermeable and under the action of vertical concentrated 
staircase loads. In these two figures, the horizontal coordinates are also /t kτ ρ=  and the vertical coordinates are 
the dimensionless solid phase displacements / cu kVξ ρ= and liquid phase displacements / cU kVη ρ=  of point 
B respectively. From the two figures, we can get a different conclusion from that of the permeable surface 
condition. That is, when the free surface is impermeable, the effects of aρ  on the solid displacement and the 
liquid displacement are all apparent, and both of the solid and the liquid displacements when aρ =0.0877×104 is 
relatively small than that of aρ =0.With the growth ofτ , the effects of aρ  on the solid phase gradually increase. 
While the effects of aρ  on the liquid phase are large in a given time quantum, beyond this time quantum, the 
effects of aρ  on the liquid phase become weak.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CLOSING REMARK 

A high efficiency explicit finite element method for dynamic analysis of fluid saturated porous media 
considering of the coupling mass aρ  are developed, and computing results of this method compared with 
analytic solution are presented in this paper. The computing results of two different loads indicate that the 
effects of the coupling mass on the dynamic responses of saturated porous medium are connected with the 
boundary condition of the free surface. When the free surface is permeable, the coupling mass has obvious 
effect on the liquid phase displacements while having little effect on the solid phase displacements, which can 
cause the diversification of pore pressure. And when the free surface is impermeable, the coupling mass has 
obvious effect both on the liquid phase displacements and the solid phase displacements. This stated method is 
of a very effective method with the characteristic of high calculating speed and small memory needed, and 
offering an effective method for dynamic response numerical simulation of fluid saturated porous media. 
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Fig. 15 Effect of coupling mass on solid phase 

displacement of the example 1 when the free surface 
being impermeable 
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Fig. 16 Effect of coupling mass on liquid phase 

displacement of the example 1 when the free surface 
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