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ABSTRACT : 

The pseudo-dynamic test method is a well established and widely spreading experimental technique for 
structural analysis but the convenience of the chosen time-stepping scheme is not often adequately stressed and 
reported in experimental results. In fact to obtain results reliable such as those granted by shaking table tests it 
is necessary to stand a noticeable computational effort to integrate step by step the dynamic equilibrium 
equation. In this survey a comparison between a number of numerical integration techniques and some 
numerical examples is presented. The integration methods have been chosen among the most established and 
newest ones with the aim to investigate their advantages and downsides particularly with regard to 
computational effort and error propagation for linear and non-linear structural systems. Furthermore some 
general information and definitions concerning numerical integration tecniques and their stability and accuracy 
properties are given; Central Difference Method, Newmark Explicit Method, the α-Method, as conceived by 
Hilber, Hughes and Taylor in 1977, and the Time Discontinuous Galerkin Method, applied by means of 
predictor-corrector tecnique by Bursi, Bonelli in 2001 and 2002, are discussed.  
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1. INTRODUCTION 
 
A pseudo-dynamic test can be considered a simulation of a shaking table test by means of experimental equipment
usually used to perform quasi-static tests. A greater computational effort though is demanded by pseudo-dynamic
test because the equipment must be directed by an electronic controller to perform a closed loop test. In fact at each 
step the structural differential equation of motion has to be integrate to obtain the displacements to impose on the
specimen in a quasi-static way. This computation employs specimen restoring forces measurements and thus it
takes place during the test. The integration of the equation of motion and the minimization of the delay between
actual and command displacements, are the main tasks performed by the controller.  
 
Because of the integration of the dynamic equation of motion is the core of the pseudo-dynamic test method, it 
constitutes the current focus of the research. Two are the main research fields: the numerical analysis of stability 
and error propagation properties of the algorithms and the exploration of numerical schemes with higher 
performances. The ultimate target is performing pseudo-dynamic test on structural non-linear systems excited by 
random forces. In fact there are many circumstances influencing the results reliability, for example the choose of
the temporal intervals ∆t and ∆T which represent, respectively, the numerical integration step and the time span
effectively running during a test between two ensuing loading steps. The choose of ∆t is obviously linked to many
experimental aspects as it has been discussed by Mahin and Shing (1985) while the numerical temporal step is 
strictly linked to the scheme properties. The level of viscous damping, the kind of external excitation and the 
structural system characteristics are others determinant elements in the choose of the proper numerical integration
scheme.  
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The algorithms reported in this paper are the Central Difference Method, the Explicit Newark Algorithm, the 
α-Method (Hilber, Hughes, Taylor) and the Time Discontinuous Galerkin Method. Their description has the aim to 
provide a useful tool to approach the pseudo-dynamic test method and to show through some numerical
comparisons the influence of the used algorithm on the results obtained.  
 
Central Difference Method and Explicit Newmark Algorithm (1959) are the first numerical schemes which have
been used to carry out a pseudo-dynamic test. Referring to Newmark algorithms, interesting analyses have been 
done by different authors. Xie and Steven (1994) have analyzed its stability, in the case of non-linear systems while 
Shing and Mahin (1987 b) have studied the possibility of modifying the scheme to make it more effective in 
connection with higher spurious modes. The so called α-Method (Hilber, Hughes and Taylor 1977) too has been 
subjected to several implementations and comparisons (e.g. Shing and Mannivan 1990, Shing, Vannan and Cater
1991, Bonelli and Bursi 1994, Bursi and Shing 1996, Bonelli and Bursi 2004). A weak formulation of the Galerkin 
method has been used and tested via numerical and symbolic applications not long ago (Bonelli, Bursi and
Mancuso 2001 and 2002) and is here described since it uses a very different approach to the problem. 
 
 
2. EQUATION OF MOTION OF A M.D.O.F. SYSTEM AND SOME DEFINITIONS FOR ITS 
NUMERICAL INTEGRATION 
 
The dynamic equilibrium equation of a multi degrees of freedom structure can be expressed by Eqn. 
Errore. L'origine riferimento non è stata trovata. where d , v , a are respectively the displacements, 
velocities and accelerations vectors of the system, M e C are the mass and damping matrices, R(d) is the restoring 
forces vector and F the external forces vector. 
 

 =Ma + C v + R(d) F  (2.1)
 
Eqn. Errore. L'origine riferimento non è stata trovata. together with the corresponding initial data 0 0t =d( ) d , 

0 0t =v( ) v constitutes a Cauchy problem whose closed form solution is known only for special cases. To approach
a numerical solution of this problem the first step is the discretization of the temporal domain by choosing a
number N of time intervals lasting ∆t and this way Eqn. (1) assumes at the time instant it = i t∆  the following 
form: 
 
 i i i i=Ma + Cv + R(d) F  (2.2)

 
In order to evaluate the numerical integration methods, used to simulate and carry out pseudo-dynamic tests, and to 
check their aptitude to simulate the dynamic response of a structural system, some definitions concerning the
numerical properties and error propagation of the schemes can be useful (Quarteroni et al. 2002). The accuracy 
achieved by a numerical scheme is strictly linked to the local truncation error τi (∆t). This is the error existing at 
each step between the exact solution and the approximated one under the hypothesis that at the previous step
numerical and exact solutions were coincident. The maximum value of the local truncation error is the global 
truncation error τ (∆t) and an integration algorithm is of k-th order consistency if this error is an infinitesimal of 
k-th order respect to ∆t. To achieve convergence though, a global truncation error infinitesimal respect to ∆t is not 
enough, in fact, the stability of the numerical scheme (the ability of working despite perturbations and errors
accumulation) is a necessary condition. This definition of stability is related to the behavior of the algorithm when
∆t is infinitesimal but stability concerns the asymptotic behavior of the scheme too. In this sense an algorithm is
called stable if the numerical solution is bounded when time goes to infinity. Numerical schemes can be stable 
depending or not on the integration interval, their stability will be thus conditioned or unconditioned. Usually 
explicit schemes are conditionally stable and the implicit ones unconditionally stable, but this is only a general 
rule. For a structural system dynamically forced (which is a set of damped oscillators) a numerical scheme is stable 
if its free vibrations don’t grow without boundaries regardless of the initial conditions. To analyze the stability of a
numerical scheme, the free vibrations can be studied considering that the response can be expressed in the 
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following recursive form  
 
 + =i 1 ix A x  (2.3)

 
where A is the amplification matrix of the numerical scheme, that is independent on i, but is strictly dependent on
the adopted scheme, and x is the vector containing some or all state variables of the system such as displacements, 
velocities and accelerations. Some conditions on the eingenvalues of the matrix A give proof of stability of the
algorithm. 
 
Since the amplification matrix A depends on the dynamical characteristics of the system such as mass, stiffness and 
damping and on those attaining the scheme, these conditions convert on inequalities correlating the own pulsations
ωk of the system and the temporal step ∆t.  
 
 
3. CENTRAL DIFFERENCE METHOD 
 
For the case of single degree of freedom systems, this numerical scheme assumes that velocity and acceleration at
the i-th step can be described by the following equations (Mahin and Shing 1985) 
 
 ( ) ( ) 2

1 1 1 1/ 2 ; 2 / ;i i i i i i iv d d t a d d d t+ − + −= − ∆ = + − ∆  (3.1)
 
Equilibrium Eqn.(2.1)  specialized in the case of a s.d.o.f. system, among with Eqs. (3.1) can be rearranged to 
express the displacement in the form 
 
 ( ) ( ) ( ) 12

1 10.5 2 0.5i i i i id t F R t C m d md t C m −
+ −⎡ ⎤= ∆ − + ∆ − + ⋅ ∆ +⎣ ⎦  (3.2)

 
For a linear s.d.o.f. system under an external force and with zero viscous damping, a direct step-by-step integration 
algorithm can be expressed in a recursive form as 
 
 n+1 n nf= +x A x l  (3.3)

 
where l is the load operator and fn is the value of the external excitation at the n-th step but this formulation does not 
take into account the experimental and numerical errors which are always present in a numerical simulation or in 
an actual test. These errors are due for example to floating-point computation or they are inherent to the numerical 
scheme, but the main source is the restoring force feedback, further  the latter is due both to measurement
imprecision and to the difference between the actual displacements and the command ones which affects the 
restoring forces. By taking into account only the experimental errors Eqn. (3.3) assumes a modified  form which 
depends not only on A and l but also on the “measured” restoring force, affected by the restoring force feedback 
error r

ne  introduced at the n-th step. For Central Difference Method a formulation of the cumulative error on the 
response system due to this feedback error has been given by Shing and Mahin (1987 a) and Shing and Mahin 
(1990). Furthermore Mahin and Shing (1984) showed how the natural frequency of the system is distorted by the 
error presence, in fact the apparent period of the oscillator undergoes a shrinkage which depends on the time step 
∆t. As it is shown in Fig. 1-a  the numerical pulsation approaches the real one when the time step ∆t goes to zero.
In Fig. 1-b one can see the different response obtained for a single degree of freedom system, undamped and 
unforced, featured by an initial velocity v0 = 1 for different integration time steps. The ratio between the maximum 
cumulative error 1 maxne +  and the standard deviation of the experimental random feedback errors at each instants 

eS , estimated as a function of the number of steps n and the product ω·∆t is shown in Fig. 1-c. 
 
An example of numerical errors due to the scheme is given by a comparison with an alternative formulation of the
Central Difference Method. In this case the summed variable ( )1 /i i iz d d t−= − ∆  instead of di (Eqn.(3.2)) is used 
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to avoid round-off errors caused i.e. by floating point computations or in the feedback process (Mahin and Shing 
1985). A simple comparison of the difference between the two formulations is shown in Fig. 2-b where the 
displacement response of a s.d.o.f. system with natural angular frequency ω=2π (rad/s) and viscous damping 
ζ=0.01 first and ζ=0.1 after, is corrupted, step after step, by adding a random variable with zero mean (µ=0) and 
standard deviation σ = 0.001 (Fig. 2-a). The system isn’t externally excited and null initial conditions are imposed. 
The integration step used is ∆t=0.01 (s). By using both formulation a response different from the attended null one 
is obtained because of the error influence but the second formulation achieves a smaller system response for its 
greater capacity of working in spite of perturbations. Observe that a better effect is obtained for a greater value of
viscous damping. 
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Figure 1. Period shrinkage by Central Difference Method (a); 
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Figure 2. Noise with zero mean and standard deviation σ = 0.001 (a); Normalized displacements of a not excited 
s.d.o.f. system calculated by using the two different formulations of the Central Difference Method in presence of

the noise and for two different value of viscous damping: ζ = 0.01 (b) and ζ = 0.1 (c). 
 
 
4. NEWMARK ALGORITHMS AND α-METHOD 
 
The α-Method family of algorithms (Hilber, Hughes and Taylor 1977) is based on the following set of equations:
 
 i(1 ) (1 ) (1 )α α α α α α+ + + ++ + − + + − = + −i 1 i 1 i i 1 i i 1Ma Cv Cv R R F F  (4.1)

 
 ( )2 0.5∆t ∆t β β+ += + + ⎡ − + ⎤⎣ ⎦i 1 i i i i 1d d v a a  (4.2)

 
 ( )1∆t γ γ+ += + ⎡ − + ⎤⎣ ⎦i 1 i i i 1v v a a  (4.3) 

 
The algorithms of this family are a function of three parameters α, β, γ and they include the Newmark algorithms 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
when α = 0. In its general form a Newmark algorithm is implicit because at the temporal step ti+1 the displacement 
depends on the acceleration at the same instant. The two parameters β and γ control the accuracy and stability 
properties of the scheme, i.e. by assuming β = 0.25 and γ  = 0.5 we are using the trapezoidal rule or constant 
average acceleration method, whereas the choose β = 0 and γ  = 0.5 provides an explicit formulation which is the 
one that has been first used to carry out pseudo-dynamic tests. This Explicit Newmark Method and the Central 
Difference Method possess the same mathematical properties that is they are both conditionally stable and their
stability limit, in the case of a linear system, is ωk ∆t ≤  2, where ωk is the generic natural pulsation of the system.
For example referring to errors influence, the results inserted in Fig. 1 are still valid for the Newmark algorithms
family and if the simulation to which Fig. 2 refers is repeated, the same curve of the second formulation of the 
Central Different Method is obtained. 
 
The aim of α-Method family of algorithms is to overcome some limits of the Newmark algorithms regarding in
specific the numerical dissipation, that is the ability of the numerical scheme to damp the so-called spurious higher 
modes of the amplification matrix, those produced by the discretization of the motion equations. Newmark 
algorithms possess this property which is partially controlled by the γ parameter. What the method wants to 
eliminate is the dissipation of the basic modes of the system when spurious higher modes are dissipated by means
of the parameter γ. In this sense the introduction of the parameter α inverts the trend of the basic modes to be 
dissipated when the spurious higher modes are dissipated.  The α parameter (α < 0), introduces a negative 
damping aptitude which is similar to the viscous damping and, what’s more important, is not effective on the
higher modes. These properties led the authors of the method in object to arrange the γ-dissipation and a negative 
α-dissipation so that it’s possible to get rid of drawbacks like the dissipation of the lowest modes and gain the
benefits (the dissipation of spurious modes) of the γ-dissipation. The new algorithm while been function of the 
three afore mentioned parameters, is thus ruled by only one of them because of the expressions stating the 
unconditional stability (β  = 0.25 (γ +0.5)2) and a positive global numerical dissipation (α + γ = 1/2).  
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Figure 4. Displacements of a 2d.o.f. non-linear system calculated for two different values of ∆t  
by means of Implicit Newmark Method and α-Method; 

 
 
In the following numerical example the  α−Method is tested in comparison with the Newmark scheme. The 
dynamical system studied is a 2d.o.f. system whose non-linear restoring forces are  expressed by 
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3
1 11 1 12 2 13 1R k d k d k d= + +  and 3

2 21 1 22 2 23 2R k d k d k d= + + . The system has been excited by a sinusoidal force 
F1(t)=400 m1sin(2π t) applied at the first degree of freedom and the structural response has been obtained for two
different values of the time step, ∆t=0.01 s and ∆t=0.0025 s. The parameters characterizing the system stiffness are 
k11=100 N/m, k22=20 N/m, k12= k21=-20 N/m, k13=5 N/m3, k23=5 N/m3 while the masses are m1=m2=10 kg. The 
simulation has been repeated for two different values of the viscous dissipation matrix: C=0.1 M and C=0.5 M. In 
this second case the maximum restoring force value is about forty times the maximum viscous force value. The 
value of numerical dissipation chosen for the α-Method is α=-0.1 which implies, γ=0.6 for the implicit Newmark 
scheme.  
 
In Fig. 4 the results obtained for different values of the matrix C are plotted. Each figure shows the displacements 
of the nodes 1 and 2 computed by using the implicit Newmark method and the α-Method. One can see how 
displacements calculated by using α-Method don’t change for the different integration step values, both for the
undamped system and for the damped one, meaning convergence has been achieved for the chosen ∆t. This doesn’t 
happen with the implicit Newmark method when the system is not damped by viscous forces. Further observe as
the increasing of dissipation produces the agreement of the responses obtained with the two methods. 
 
 
5. TIME DISCONTINUOUS GALERKIN METHOD 
 
The application of the Galerkin technique to integrate differential equation as requested in pseudo-dynamic test 
arises from the will to extend this experimental technique to highly non-linear problems. Nevertheless the first 
formulation of the method is addressed to linear problems. Observe that the numerical properties such as
unconditional stability or accuracy order, verified for a numerical scheme used to solve a linear problem, don’t
apply immediatly for non-linear systems for which stability and accuracy have to be proved for each case. The 
formulation of the Galerkin method used here is the one implemented in a predictor-corrector form by Bonelli and
Bursi (2002) for non-linear cases. The procedure has been checked on classical stiff problems such as Duffing 
oscillator and stiff string pendulum.  
 
The formulation is based on two independent fields, displacement d(t) and momentum p(t) = M·v(t). The second 
order differential equation (2.1) and the correspondent initial conditions are rewritten in the following first order 
scheme where the superposed dots indicate time derivative 
 

 
1 1

0 0 0

( ) ( ) ( ( )) ( ); ( ) ( ) , (0, );
(0) ; (0) ;

Nt t t t t t t I t− −+ + = − = ∈ =

= = =

p CM p R d F M p d 0
d d p p Mv

 (5.1)

 
The numerical properties of the algorithm both in the linear version and in non-linear one are extensively discussed 
in Bonelli, Bursi and Mancuso (2001) and (2002) and the scheme in its non-linear version has been evaluated 
(Bonelli, Bursi and Mancuso 2002) on a Duffing system whose closed-form solution is known for initial 
conditions d(0) = d0; p(0) = p0 and no external excitation. The results appear to be satisfying in respect of accuracy 
and energy-decaying properties. Nevertheless non-linear problems, far from be solved, are underlined in the
following numerical example showing the inability of the current schemes when non-linear systems are excited by 
random forces to reach a reliable solution.  
 
The  considered  system is a s.d.o.f. oscillator  whose restoring  force  is  modeled  by the Duffing expression 

( )2
1 2( ) ( ) 1 ( )R d S d t S d t= + . The system characteristics are m=1, S1=10, S2=2. The initial conditions of the system

are null while excitation is given by a Gaussian white noise with zero mean (µ=0) and standard deviation σ = 79.2. 
 
Displacements have been calculated by means of α-Method (α=-1/3) and Time Discontinuous Galerkin Method 
(a=b=1/6, number of iterations of the corrector k=2) and for two values of the viscous damping coefficient
c=0.001S1 and c=0.01S1. The excitation time step is ∆tF=0.01 s and two different values of the integration step have 
been chosen, first ∆t =∆tF = 0.01 s and then ∆t = 0.1·∆tF = 0.001 s. For each method displacements obtained with 
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the two time steps are shown in Fig. 7. These evidence how both methods are reliable only for few seconds, but in 
the case of the Galerkin Method the response for the two chosen ∆t remains coincident for a longer time. For both 
schemes differences between response obtained with different time step reduce when c increases. In spite of the 
convergence of the two methods for a sufficiently high value of c, the reliability of the response is still to be evaluated. 
In fact the balance of the energies of the system, the one given by the external forces, the one dissipated and that
stored in terms of kinetic and potential energy, could give an indication but not a definitive response. 
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Figure 7. Duffing oscillator with viscous damping coefficient c=0.001*S1 and c=0.01*S1; 

displacements calculated with different values of integration step 
 
 
6. CONCLUSIONS 
 
In this paper Central Difference Method, Newmark Explicit Method, α-Method (Hilber, Hughes and Taylor 1977), 
Time Discontinuous Galerkin Method (Bursi, Bonelli 2001 and 2002) have been reported and some simulations of 
pseudodynamic tests have been carried out on s.d.o.f. and m.d.o.f. systems to assess the numerical scheme
properties and their reliability when applied to linear and non-linear cases.  
 
In spite of the differences among the analyzed schemes, from the above tests it mainly emerges that the increasing
of the physical dissipation produces a reduction of the differences between those schemes. Alternatively, low 
levels of the dissipation coefficients pose the problem of the identification of a sufficiently reliable algorithm.  
 
In the case of linear systems some rules which make it possible to evaluate the algorithm stability, are available. On 
the contrary, in the case of non linear systems, it is not possible to obtain rules valid in each case. Certainly some
verification, for example by computing the energies involved in the test may be carried out at the end of a 
pseudo-dynamic test in order to verify its reliability. 
 
What above makes some questions rise about pseudo-dynamic tests each time the algorithm used is not declared
and a discussion about it is not offered before the results are proposed. Further details about the differences 
involving the numerical schemes analyzed can be found in (Amato and Cavaleri, 2007).  
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