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ABSTRACT :

The  nonlinear  dynamic  response  of  RC  buildings  with  dissipators  is  studied  using  advanced  computational
techniques.  A fully  3D geometric  and constitutive  nonlinear  model  is  used  for  the  description  of  the  dynamic
behavior  of  structures.  Each  material  point  of  the  cross  section  is  assumed to  be  composed  of  several  simple
materials  with  their  own  constitutive  laws.  A specific  element  based  on  the  beam theory  is  proposed  for  the
dissipators. Several numerical tests are carried out to validate  the proposed model. 
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1. INTRODUCTION 

Conventional seismic design practice permits designing RC structures for forces lower than elastic ones, on the
premise that the design assures significant ductility. Frequently, the dissipative zones are located near the beam-
column joints and, due to cyclic inelastic incursions, structural elements can suffer a great amount of damage.
New techniques based on adding devices with the objective of dissipating the energy exerted by the earthquake
and alleviating the ductility demand on primary structural elements have contributed to improve the seismic
behavior of buildings. In the case of passive energy dissipating devices (EDD) an important part of the energy
input is absorbed and dissipated, therefore, concentrating the nonlinear phenomenon without the need of an
external energy supply. 
Most of  he design methods proposed for RC structures are based on the assumption that the behavior of the
bare structure remains elastic, while the energy dissipation relies on the control system. However, experimental
and theoretical evidence show that inelastic behavior can also occur in the structural elements of controlled
building during severe earthquakes. Considering that most of the elements in RC buildings are columns and
beams, one-dimensional formulations for structural elements appear as a solution combining both numerical
precision  and  reasonable  computational  costs.  Some  formulations  of  this  type  have  been  extended  for
considering geometric nonlinearities and considering inhomogeneous distributions of materials on arbitrarily
shaped beam cross sections.

Formulations for beams considering both constitutive and geometric nonlinearity are rather scarce; most of the
geometrically  nonlinear  models  are limited  to  the  elastic  case  and the  inelastic  behavior  has  been mainly
restricted to plasticity. Recently, Mata et.al.have extended the geometrically exact formulation for beams due to
Reissner and Simo to an arbitrary distribution of composite materials on the cross sections for the static and
dynamic  cases.  EDDs  usually  have  been  described  in  a  global  sense  by  means  of  force-displacement  or
moment-curvature relationships attempting to capture the energy dissipating capacity of the devices.

In summary, a modern numerical approach to the structural seismic analysis of RC buildings should take into
account the following aspects:

(i) Geometric nonlinearity due to the changes in the configuration experienced by flexible structures. 

(ii)  Constitutive  nonlinearity.  Inhomogeneous  distributions  of  inelastic  materials  can  appear  in  many
structures. The estimation of the dissipated energy should be considered in a manner consistent with the
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thermo-dynamical basis of the constitutive theory.

(iii) Control techniques, allowing to improve the dynamics of structures by means of incorporating EDDs.

At the authors’s knowledge, there is not an unified approach covering all these aspects in a manner consistent
with the principles of the continuum mechanics .

In this work, a fully geometric and constitutive nonlinear formulation for rod elements is extended to the case
of flexible RC structures equipped with EDDs. A fiber approach is used for arbitrary distributions of materials
on  the  cross  sections.  EDDs  are  considered  as  beams  without  rotational  degrees  of  freedom.
Thermodynamically consistent constitutive laws are used for concrete and steel. In particular, a damage model
able to treat the degradation associated to the tensile and compressive components of stress in an independent
manner is presented. The mixing rule is employed for the treatment of the resulting composite. A specific
nonlinear  hysteretic  force-displacement  relationship  is provided for  describing  the  mechanical  behavior  of
several types of EDDs. Numerical examples cover several complex phenomena such as the inelastic P-∆ effect
and inelastic dynamic structural torsion. 

2. FINITE DEFORMATION FORMULATION FOR STRUCTURAL ELEMENTS 

The geometrically exact formulation for rods due to Reissner and Simo is expanded for considering a curved
reference configuration. In this section, a brief summary of results relevant for the development of constitutive
laws able to be incorporated in the beam theory are presented. 

Let { Ei } and { ei } be the spatially fixed  material  and  spatial  frames[1],  respectively. The straight reference
beam is defined by 00=S E1 with S in [0,L] its arch-length coordinate. The beam cross sections are described
by the coordinates  directed along { t 0 } and the position vector of any material point is X =S E1

E .
A beam with initial curvature is considered with a spatially fixed curve 00 . Each point on this curve has 
attached an orthogonal frame t 0i=0

Ei where 0 in  SO(3).  The beam cross section  A is defined considering
 directed  along { t 0 } .  The  position  vector  of  a  material  point  on  the  curved  reference  beam  is
x=S 10 E . 

The motion deforms points from 0 to 0 S , t (at time t) adding a translational displacement u0 and the local
orientation frame is simultaneously rotated from S , t to 0 by means of the  incremental rotation tensor
=n0 (see Fig. 1). 

The position vector of a material point on the current beam is 

(1)
The deformation gradient is the gradient  of  the deformation mapping of Eq. (1) and determines the strain
measures at any material point of the beam cross section. The deformation gradient (relative to the curved
reference beam) is

(2)
where g0=Det [F0] and =n , S

t is the spatial curvature tensor relative to the curved reference beam. In
Eq. (2), the term =  ,S− t 1 corresponds to the reduced spatial strain measure of shearing and elongation.

[1] The indices i and b range over {1,2,3} and {2,3}, respectively; and summation convention holds.
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Figure 1. Configurational description of the beam.

P1 is  First  Piola  Kirchhoff (FPK)  stress  tensor  energetically  conjugated  pair  to =  t  .  The
corresponding material forms are given by means of the pullback by  . Additionally, the spatial form of
the stress resultant and the stress couple vectors are

(3)
According to the developments given in Ref. [2], the classical form of the equilibrium equations for rods are

(4)
where n p and m p are the external body force and body moment per unit of reference length at time t, A0

, S0

and  I 0
 are the cross sectional mass density, the first mass moment density and the second mass moment

density per unit of length of the curved reference beam, respectively.
Considering  an  admissible  variation   ,   of  the  pair    , taking  the  dot  product  with  Eqs. (4),
integrating over the length of the curved reference beam and integrating by parts, we obtain the following
nonlinear functional G

(5)
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1.1. Energy dissipating devices

The finite deformation model for EDDs is obtained from the previously described rod model,  releasing the
rotational degrees of freedom and supposing that the complete mechanical behavior of the device is described
in terms of the evolution of a unique material point located in the middle of the resulting bar. This point is
referred as the dissipative nucleus (see Fig. 2).

Figure 2. Energy dissipating device.

The current position of a point in the EDD bar is obtained from Eq. (1) but considering that  no cross sectional
description is required; thus, one can assume  x=  . The current orientation of the (straight) EDD bar of initial
length  L0   is given by the tensor 0 . Assuming that the rotational degree of freedom are released, the spatial
position of the dissipative nuclei is obtained as L0/2, t  . The only nonzero component of the strain vector is 

(6)
3. CONSTITUTIVE MODELS

In  this  work,  material  points  on  the  cross  sections  are  considered  as  formed  by  a  composite  material
corresponding to a homogeneous mixture of different simple components, each of hem with its own constitutive
law. The resulting behavior is obtained by means of the mixing theory. 

3.1. Degrading materials: Tension-compression damage model

In this work the tension-compression damage model is modified in order to allow its inclusion in the Reissner-
Simo formulation for inelastic rods. They permit to consider two important features of the mechanical behavior
of concrete: (i) Independent degradation of the mechanical properties for tensile or compressive loading paths
(ii) Large differences in the tensile and compressive thresholds. The model is based on an adequate form of the
free  energy  density  depending  on  two  scalar  damage  variables  d± in  [0, 1],  related  to  the  degradation
mechanisms occurring under tensile (+) or compressive (-) stress concentrations.
Stress split. Let P m= P1

m⊗ E1=[C
me ⊗ E1]  be the material form of the elastic FPK stress tensor (see section

2.1) which is consistent with the kinematics of the present rod theory. The following split of the stress tensor is
proposed:

(7)
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Then, the Helmholtz free energy potential of the degrading model [37] is given by

(8)
Damage criteria. Two (scalar) equivalent stresses are defined as

(9)
where oct

−  and oct
−  are the octahedral normal and shear stresses which depend on materials properties.

Two separated damage criteria are defined:

(10)
Constitutive  relation  and dissipation.  Considering  the  free  energy  density  one  has  that  Clausius-Duheim
inequality can be expressed as

(11)
which  establish  that  entropy  always  grows  leading  to  an  irreversible  process.  The  following  constitutive
relation is obtained:

(12)
The material form of the tangent stiffness tensor is obtained as

(13)
3.2. Constitutive relations for EDDs

The constitutive law proposed for EDDs is based on a previous work of the authors which provides a versatile
strain-stress relationship with the following general form:
(13)
The model uncouples the total stress in viscous and non{viscous components, which correspond, in terms of
rheological  models,  to  a  viscous  dashpot  device  acting in  parallel  with  a  nonlinear  hysteretic  spring.  The
viscous component of the stress has the following form:

(14)
The  response  of  the  nonlinear  hysteretic  spring  is  obtained  solving  the  following  system  of  nonlinear
differential equations:
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(15)
where Ky is the post yielding stiffness, Ke the elastic stiffness, dy is the yielding strain of the material, and e
represents an internal variable of plastic (hysteretic) strain, which takes values in the range [-dy; dy].  The
parameter n in the associated flow rule describes the degree of smoothness exhibited by the transition zone
between the pre and the post  yielding branches of  the hysteretic  cycle.  The parameters  Ke,  Ky,  dy,  n  are
nonlinear functions of the point where the strain rate changes of sign. Some examples can be seen in figure 3.

4. NUMERICAL EXAMPLES

4.1. Seismic response of a precast RC building with EDDs

The nonlinear seismic response of a typical precast RC industrial building shown in Fig. 4  is studied. The
building has a bay width of 24 m and 12 m of inter-axes length. The storey height is 10 m. The concrete of the
structure is H-35, (35 MPa, ultimate compression), with an elastic modulus of 29000 MPa.

Figure 3. Examples of EDD's behaviors. (a): Maxwell model.  (b): Bilinear inviscid plastic model. (c): Non
linear dashpot. (d): Rubber model.

It has been assumed a Poisson coeFIcient of  0:2, a tension/compression relation of n =10, fracture energy of G
+ f =10 Nmm2 (G¡f =1 Nmm2 ). The ultimate tensile stress for the steel is 510 Mpa with  = 0:15, Gf =500
Nmm2, elastic modulus of 200000 Mpa. This figure also shows some details of the steel reinforcement of the
cross sections. The dimensions of the columns are 60x60 cm2. The beam has an initial height of 40 cm on the
supports and 140 cm in the middle of the span. The permanent loads considered are 1000 Nm2 and the weight of
upper half of the closing walls with 225.000 N. The input acceleration is the N-W component of the El Centro
1940 earthquake record.
First, a set of pushover analyze is performed considering the following cases: (i) The bare frame under small
displacements assumption. (ii)  The bare frame in finite deformation. (iii) The frame with EDDs and small
deformation. (iv) Idem as (iii) but with finite deformation.
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Fig. 4. Numerical model of the precast frame with energy EDDs and cross sectional meshes.

The purpose is to establish clearly the importance of considering second order effect coupled with inelasticity
in the study of flexible structures. Fig. 5a shows the capacity curves obtained for the four mentioned cases. In
this figure it is possible to see that for both, the passively controlled and uncontrolled cases, the small strain
assumption overestimate the real load carrying capacity of the structure, due to the fact that the vertical load
derived from the self-weight compress the columns, contributing to control the cracking and degradation due to
the lateral loading. In the case of finite deformation, second order effects are taken into account, the so called
P-∆,  and an anticipated strength degradation is  observed for displacements over 60 mm which is  a lateral
displacement level expectable under strong seismic actions. 
Additionally, the incorporation of EDDs increases the stiffness and the yielding point of the structure at global
level without affecting the global ductility. Although at material point level, softening is always present for the
damage model beyond the linear elastic limit, at global level only the simulation corresponding to case (iv)
captures a small part of the softening post peak response.

Figure 5. (a): Capacity curves. (b): Evolution of the global damage index.

Fig. 5b shows the evolution of the global damage index for the cases (i){(iv). Here it is possible to appreciate
that the global damage index grows quickly for the cases when finite deformation is considered and the bene¯ts
of adding EDDs are not visible due to the fact that the pushover analysis does not takes into account energy
dissipation criteria. The results of the numerical simulations in the dynamic range allow seeing that the use of
plastic  EDDs  contributes  to  improve  the  seismic  behavior  of  the  structure  for  the  case  of  the  employed
acceleration record.
Fig. 6 shows the time history response of the horizontal displacement, velocity and acceleration of the upper
beam-column  joint  for  the  uncontrolled  and  the  controlled  case.  A reduction  of  approximately  57.5% is
obtained for the maximum lateral displacement when compared with the bare frame.
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 Acceleration and velocity are controlled in the same way, but only 24.3% and 7.0% of reduction is obtained,
respectively. A possible explanation for the limited effectiveness of the EDD is that the devices only contribute
to increase the ductility of the beam-column joint without alleviating the base shear demand on the columns
due to the dimensions of the device and its location in the structure.

Fig. 6. Time history responses. (a): Horizontal displacement. (b): Velocity. (c): Acceleration.

5. NUMERICAL EXAMPLES

In this work, a geometrically exact formulation for curved and twisted beams has been extended for considering
arbitrary distributions of rate dependent inelastic composite materials on the cross sections in the static and
dynamic (even seismic)  cases.  The resulting model  is  implemented  in  a  displacement  based FE code.  An
iterative Newton-Raphson scheme is used for the solution of the discrete version of the linearized problem. An
specific FE element for EDDs is developed (with only one integration point), based on the beam model but
releasing the rotational degrees of freedom. Several examples confirm the ability of the model for simulating
the nonlinear behavior of RC buildings with energy dissipating devices. 
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