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ABSTRACT : 

The applicability of fully 2D or 3D refined finite element models of reinforced concrete structures subjected to 
seismic loading is questionable, especially due to their high computational burden and inherent complexities
involved in developing and running the model and interpreting the results. On the other hand, beam-column 
type finite elements developed in the framework of distributed plasticity, where the nonlinear response of the 
basic system is found from the integration of the response at control sections along the element axis, seem to
provide the best compromise between the desired accuracy and computational efficiency. 
 
The present work starts with a review of the main features of the state-of-the-art distributed inelasticity 
beam-column formulations that include shear effects and presents the grounds on which the motivation for the
development of a new model settles. One of such elements is then developed with a view to the seismic 
assessment of reinforced concrete frame structures. The proposed model is able to deal with arbitrary loading
conditions and involves the interaction of axial force, shear, bending moment and torsion. Since shear-normal
stress interaction is explicitly included, the current model is deemed suitable for shear critical member analysis.

KEYWORDS: shear, torsion, beam-column finite element, reinforced concrete,
shear-normal stress interaction, distributed inelasticity 

1. INTRODUCTION  
 
The strong seismic shaking of common reinforced concrete (RC) structures, such as buildings and bridges,
unveils the improbable interaction of an amount of phenomena of the most diverse materially and geometrically
nonlinear nature. To the present time, there is not a single model capable of suitably considering the complexity 
of all such mechanisms and thus predicting with the desired generality, accuracy and reliability the response of 
these structures. It is then of the outmost importance to correctly identify and prioritize the contribution of such
phenomena to the global (and local) level responses, so that an appropriate model can be developed. 
 
The most immediate and obvious decision that has to be taken is whether the shear deformation of the member
under analysis (beam, column or wall) is of relevance or not. While the consideration of the flexural
deformation (the one caused by axial force and bi-directional bending moments, for the 3D case) is a crucial
component to correctly model the global structural deformation, the relative importance of the shear counterpart 
(bi-directional shear and torsion, for 3D) should be critically assessed. In view of its significance for the
behaviour of some types of RC members as short bridge piers and walls, the modelling strategies for this type of 
mechanism constitute the main issue of the present paper. 
 
When the shear response (in addition to the flexural behaviour) of the member is relevant, then the interaction
between the flexural and shear components becomes of immediate concern. It is well-known that such forces 
are effectively coupled and disregarding such situation is a crude assumption. Additionally, it should also be
noted that if, instead of the two-dimensional coupling (N-M-V), the complete three-dimensional interaction is 
considered (N-My-Mz-Vy-Vz-T), then the complexity of the problem increases considerably. 
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Beam-column elements where the inelastic behaviour is lumped at certain locations of the member – also 
known as plastic hinge approaches, are not able to capture such phenomena. Detailed 2D or 3D finite elements
correspond to the opposite end of the modelling spectrum and have been used by the research community to 
reproduce the behaviour of RC walls, but are not a practical tool for design engineers and for generalized 
analyses of beam and column members. Additionally, they require a rare combination of considerable expertise 
in numerical modelling and powerful processing capabilities. Overall, beam-column elements of the distributed 
inelasticity type seem to offer the best compromise between output accuracy and computational cost and thus 
will be the sole focus of this paper. In particular, the authors’ attention will fall on the development of a general
three-dimensional beam-column formulation where both the beam equilibrium and the inter-fiber equilibrium
are respected, given the almost complete absence of proposals in this topic up to the present date.  
 
 
2. EXISTING MODELS 
 
In the current chapter some of the most important features of beam-column formulations will be briefly 
addressed, underlining those characteristics that are suitable for earthquake engineering modelling. The classical 
finite element method is based on the exact satisfaction of the strain-displacement and displacement boundary 
conditions, while the arguably even more fundamental differential equations of equilibrium in the interior and
the natural boundary conditions are only satisfied in the limit as the number of elements increase. It is recalled 
that the local form equations governing the spatial variation of the stress tensor S in any portion of a
three-dimensional body are: 
 

 T

div 0+ =⎧⎪
⎨

=⎪⎩

S b

S S
 (2.1) 

 
where b is the vector of body forces. It will be shown in this paper that models accounting for the shear
behaviour of members, even recent proposals, frequently disregard equilibrium considerations. Such simplifying 
assumptions obviously imply a loss of accuracy of the model and will be analysed in the following two sections.
 
2.1. Element Formulation and Inter-section Equilibrium 
A beam is a 3D body which, due to its geometrical characteristics, is amenable to a reduction from three to one 
dimension, in terms of the governing differential equations. In what concerns equilibrium, the well-know beam 
differential equations are usually obtained from the equilibrium of an infinitesimal portion of the beam, 
subjected to a general loading combination. This approach has the advantage of providing a direct, simple and
physically meaningful interpretation of the equations of equilibrium of a beam, in function of common
engineering quantities such as axial force, moment and shear force. The drawback of such procedure is that the 
relation with the local form of equilibrium – Eqn. 2.1 – is lost. To find an explicit connection between the beam 
equations and the previous solid mechanics relations two different paths can be followed. 
 
The first one is by enforcing the local form of equilibrium in an average sense over the cross section: 
 

 
( )

( )

div dA

div dA
Ω

Ω

+ =

× + =

∫

∫

S b 0

p S b 0
 (2.2) 

 
where p(y,z) = yey + zez is the sectional position vector relative to the beam (x) axis and Ω stands for the cross 
section. If the previous expressions are developed using some basic mathematical tools and the customary
definition of section generalized forces, it can be proved that the original beam equilibrium equations are
completely recovered. 
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The previous approach, which shows that the beam equilibrium equations can be obtained by an “averaging”
operation over the cross section of its more general three-dimensional counterpart, can be further and more
thoroughly understood through the projection of the local equilibrium equations in a space of a pre-determined 
displacement field. 
 
In fact, note that for a general δu the following equivalence holds: 
 

 ( ) ( )
V L

div 0 div dv 0 div dA dx 0
Ω

⎛ ⎞
= ⇔ ⋅δ = ⇔ ⋅δ =⎜ ⎟

⎝ ⎠
∫ ∫ ∫S S u S u  (2.3) 

 
The term between parentheses is the so-called equilibrium residual R(x) of a differential element of beam. Now
consider the following displacement field corresponding to the plane-section (PS) hypothesis of the 
Euler-Bernoulli beam theory: 
 

 ( ) ( ) ( )

0

0

0PS PS
x,y,z y,z x

x

y 0

z 0

u
v

1 0 0 0 z y
w

0 1 0 z 0 0
0 0 1 y 0 0

w '
v '

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎢ ⎥⎢ ⎥= = − ⎢ ⎥⎢ ⎥ θ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥θ = −
⎢ ⎥
θ =⎢ ⎥⎣ ⎦

u N d  (2.4) 

 
where d(x) is the vector of the generalized section displacements. If this displacement field is used as the 
projection space of Eqn. 2.3 it can be checked that zeroing the beam equilibrium residual yields: 
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x
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∫d  (2.5) 

 
Making use of the traditional definitions of section generalized forces, it is readily noted that the previous set of 
equations corresponds to the beam equilibrium, but limited to the case of constant shear. It is noted, however,
that the full original beam equilibrium equations are recovered if the projection space is the one corresponding
to the Timoshenko beam theory. 
  
Independently of how these equilibrium relations are obtained, it is to be underlined that the development of
element formulations that satisfy them is of the biggest concern for earthquake engineering modelling purposes. 
This is so since RC frame structures under seismic action are expected to undergo highly inelastic behaviour, 
which cannot be accurately captured by the fixed displacement shape functions of the classical finite element
method (stiffness-based approach). Such intent of verifying this “inter-section” equilibrium has been pursued 
more acutely throughout the last 15 years, leading to the advancement of the so-called nonlinear flexibility 
methods. The comparison between these two different approaches is discussed elsewhere [Correia et al., 2008]. 
 
2.2. Sectional Formulation and Shear-Normal Stress Interaction 
The verification of an “average measure” of the local form of equilibrium, examined before, obviously does not 
guarantee that it will hold at a pointwise level within the section. Unfortunately, it has been shown and it is now 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 

generally recognized that such “intra-section” or “inter-fibre” equilibrium strongly influences the shear stress 
and strain distribution in the section ([Vecchio and Collins, 1988], [Ranzo, 2000], [Mazars et al., 2006], 
[Gregori et al., 2007]). Thus, if an accurate modelling of the shear (or shear-torsional, for the 3D case)
behaviour of RC members is to be achieved, than this shear-normal stress interaction has to be taken into 
account. The simpler two-dimensional beam serves as an illustration of the state-of-the-art shear modelling 
approaches regarding this issue. 
 
Unfortunately, the most common assumption – even in recent publications ([Mazars et al., 2006], [Ceresa et al., 
2006], [Gregori et al., 2007]) – is to assume a fixed shear strain γxy or shear stress τxy pattern along the section, 
which effectively means that the intra-section equilibrium is neglected. In the latter situation a constant stress 
pattern is frequently considered. In the former case, the two alternatives that are customarily adopted are those
of a constant shear strain profile (coinciding with the hypotheses of the Timoshenko beam theory) or a parabolic 
one (which satisfies the inter-fibre equilibrium in the case of a beam with a rectangular section and linear elastic 
constitutive behaviour). There are some advantages in the consideration of a fixed shear strain pattern over the
fixed shear stress one, like the possibility of verifying the compatibility of the section warping. More 
importantly, it is highlighted that the numerical implementation of the sectional model only requires a direct 
procedure, unlike the formulations that account for the shear-normal stress interaction. This issue will become 
clearer in the next two paragraphs. 
 
The state-of-the-art 2D beam formulations that consider the local form of equilibrium are based on the
following rationale: 
 

 
( ) ( )

( )

y
xyx x

xy y
c

yx y
y

10 b s ds
x y b(y) x

div 0
0 0

x y

−

⎧ ∂τ∂σ ∂σ
+ = → τ = −⎪

∂ ∂ ∂⎪= ⇔ ⎨
∂τ ∂σ⎪ + = → σ =⎪ ∂ ∂⎩

∫
S  (2.6) 

 
The second equation of equilibrium above is disregarded based on the common assumption of no total stress in 
the transverse direction (implying that the components εy can be statically condensed). However, the first 
condition shows that the shear stress can be computed through the integration of the derivatives of the normal 
stress in relation to the beam axis. Such shear stress distribution has to be the same than the one resulting from
the assumed shear strain pattern through the RC constitutive relations. This effectively means that iterations in
the shear strain profile should be performed until both conditions are satisfied. The first proposal accounting for 
this intra-section equilibrium was that of Vecchio and Collins [1988], who computed the integrand in Eqn. 2.6.
by a finite difference estimation obtained from a flexural analysis of two different sections. This “dual section 
analysis” was again employed by Ranzo [2000], while simultaneously Bentz [2000] implemented the truly 
sectional version of it, which became known as “longitudinal stiffness method”. 
 
2.3. Comparative Review and Motivation for the Development of a New 3D Model 
The previous section showed how the inter-fibre equilibrium was included in some limited research studies 
regarding the planar behaviour of beams. Naturally, an accurate structural assessment requires the consideration 
of the behaviour of RC members subjected to the more general combination of axial force, bi-directional shear, 
bi-directional bending moment and torsional moment. It should be rather obvious that the importance of the 
continuous adjustment of the shear distribution throughout the loading range greatly increases for the previous
3D situation. In addition, the inclusion of cyclic modelling capabilities further adds to this observation. 
 
Unfortunately, it can be seen in Table 2.1 that, up to now, there is only one model that simultaneously considers 
the full 3D behaviour along with the inter-fibre equilibrium [García, 2005]. The table also depicts those models 
that verify the inter-section equilibrium, of relevance for earthquake engineering modelling purposes as 
mentioned in section 2.1. 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 

 
 

Table 2.1 Comparison of different shear modelling proposals 

2D: N - Mz - Vy

3D: N - My - Mz - Vy - Vz - T

INTER-SECTION EQUIL.
FB: Flexibility-based
SB: Stiffness-based

INTRA-SECTION 
EQUILIBRIUM

Vecchio and Collins [1988] N - Mz - Vy Not addressed YES ("Dual-section")

Rahal and Collins [1995, 1996, 2003] N - My - Mz - Vy - Vz - T Not addressed YES (simplified)

Ranzo and Petrangeli [1998] N - Mz - Vy FB NO

Martinelli [1998, 2000] N - My - Mz - Vy - Vz - T SB NO

Petrangeli et al.  [1999a, 1999b] N - Mz - Vy FB NO

Ranzo [2000] N - Mz - Vy FB YES ("Dual-section")

Bentz [2000] N - Mz - Vy Not addressed YES ("Longitudinal Stiff. Met.")

Remino [2004] N - Mz - Vy FB NO

Mazars and Kotronis [2005, 2006] N - My - Mz - Vy - Vz - T SB NO

Marini and Spacone [2006] N - Mz - Vy FB NO

Ceresa et al.  [2006] N - Mz - Vy SB NO

Gregori et al.  [2007] N - My - Mz - Vy - Vz - T SB NO

García [2005, 2006a, 2006b, 2007a, 2007b] N - My - Mz - Vy - Vz - T Not clear YES

 
The model proposed in the present work is based on the framework of García [2005], although a significant 
number of different features are introduced. 
 
 
3. PROPOSED MODEL  
 
3.1. Displacement Decomposition and Equilibrium Equations 
The model of García [2005] is based on the equilibrium residual of a differential beam element approach 
outlined in section 2.1. As it was referred, projecting the equations of equilibrium on the reduced space of the 
displacement field corresponding to the Euler-Bernoulli beam theory is equivalent to the reduction from the 3D 
set of equations to the usual one-dimensional beam equilibrium. Thus, if the full 3D interaction is to be 
respected a completely general displacement space has to be considered. The warping-distortion component 
field adding to uPS to form the more general three-dimensional displacement vector u is denoted as uw: 
 

 ( ) ( ) ( ) ( )
PS w PS w w

y,z x y,z x= + = +u u u N d N d  (3.1) 

 
where Nw is the (3 x nd) matrix containing the nd orthogonalized sectional deformation mode shapes Ni

w
(y,z)

corresponding to the adopted cross-section mesh and dw
(x) is the associated vector of nd modal amplitudes. This 

is a similar approach to the one adopted in the generalized beam theories [Davies and Leach, 1994]. 
 
So that trivial solutions for our problem are avoided, the information contained by the component uw should not 
repeat that which is already included in the component uPS. From a mathematical perspective, this corresponds 
to saying that both vectors should be orthogonal within the element section. However, recalling that the 
rotations θy and θz in the plane section hypothesis (Eqn. 2.4) are dependent of the derivatives of the transversal 
displacements of the section w0 and v0, the former degrees of freedom should not be included in the
orthogonalization procedure. That is, uw should comprise the displacement field corresponding to rigid rotations
around axes y and z, which will then obviously add to the displacements associated to the classical
Euler-Bernoulli assumption, θy = −w0′ and θz = v0′. In other words, only the rigid body movements of 
translation along the three axes and the rotation around the longitudinal beam axis should not be enclosed in uw.
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In the proposed model, and unlike the one of García [2005], the shape functions Ni

w that define uw are computed 
such that the previous conditions are satisfied a priori, which means that each Ni

w verifies: 
 

 ( )( )
T

T
Rigid w w

i iy,z

1 0 0 0
dA 0 1 0 z dA

0 0 1 yΩ Ω

⎡ ⎤
⎢ ⎥= ⇔ − =⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫N N 0 N 0  (3.2) 

 
It can be shown that this can be accomplished by subtracting the mentioned rigid body displacements from the 
original sectional deformation mode shapes Ni

w@ in the following way: 
 

 ( ) ( )( ) ( ) ( )( )
1

T T
w w @ Rigid Rigid Rigid Rigid w @
i i iy,z y,z y,z y,zdA dA

−

Ω Ω

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∫ ∫N N N N N N N  (3.3) 

 
It is now possible to apply the equilibrium residual approach of section 2.1 using the more general displacement
field depicted in Eqn. 3.1 as the projection space of Eqn. 2.3, which means that a residual Rw on the 
warping-distortion space will add to that on the plane-section space (RPS, Eqn. 2.5): 
 

 ( ) ( ) ( ) ( ) ( ) ( )
PS w PS w

x x xR div dA div dA div dA R R
Ω Ω Ω

= ⋅δ = ⋅δ + ⋅ δ = +∫ ∫ ∫S u S u S u  (3.4) 

 
If both residuals Rw and RPS are set to be equal to zero then obviously the complete set of equilibrium equations 
is recovered. This is the ultimate goal of the present formulation and it will be briefly presented in the remaining
pages of the paper. 
 
3.2. Constitutive Relations and Residual in the Warping-Distortion Field 
Although discussions on the chosen smeared constitutive model for RC are avoided due to space limitations, it
is assumed that a tangent constitutive tensor Dtan is available so that the following relation holds between the
stress vector increment Δσ and the strain vector increment Δε: 
 

 tan tan
x y z xy xz yz x y z xy xz yzσ = ε⎡ ⎤ ⎡ ⎤Δ Δ σ σ σ σ σ σ = Δ = Δ ε ε ε γ γ γ⎣ ⎦ ⎣ ⎦D D  (3.5) 

 
It is also noted that the strain vector corresponding to the displacement u can be written down as: 
 

 ( )

x

y

z
x yz x yz

xy

xz

yz

0 0 0

1 0 0 0 0y
0 0 0

0 0 z0 0 0
0 00 1 0x x y

0 0 1 0 0z0 0 0
0 z y

ε

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥∂ε⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥∂⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ε⎢ ⎥ ⎢ ⎥⎜ ⎟∂⎢ ⎥

∂⎢ ⎥ε ⎢ ⎥⎜ ⎟∂ ∂ ⎢ ⎥⎛ ⎞= = = + = + = +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥∂γ ∂ ∂⎝ ⎠⎢ ⎥ ⎢ ⎥ ∂⎜ ⎟⎢ ⎥
⎢ ⎥ ⎢ ⎥⎜ ⎟γ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥∂γ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎜ ⎟⎣ ⎦ ⎢ ⎥∂ ∂⎜ ⎟⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠

Lu L L u E L u u  (3.6) 

 
Making use of the displacement decomposition shown in Eqn. 3.1, the previous expression can be developed 
into: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
PS w PS w PS w w w w PS w w w w

x yz x yzy,z x y,z x y,z x y,z x x x'
x

ε ε ε ∗ ∗ ∗ ∗∂
= + = + = + + = + +

∂
Lu Lu B e E N d L N d B e B d B d (3.7) 

 
where 
 

 ( )
PS
y,z

1 0 z y
0 0 0 0
0 0 0 0
0 z 0 0
0 y 0 0
0 0 0 0

∗

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B  and ( )

0 0

x x
x

y y

z z

u '
'
'
'

∗

ε⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥φ θ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥φ θ
⎢ ⎥ ⎢ ⎥φ θ⎣ ⎦ ⎣ ⎦

e  (3.8) 

 
Taking the derivative in order to the beam coordinate axis x, one obtains: 
 

 ( ) ( ) ( ) ( )
PS w PS w w w w

x yzy,z x x x' ' ' ' '' 'ε ε ε ∗ ∗= + = + +B e B d B d  (3.9) 

 
Coming back to the residual in the warping-distortion field, Rw, note that it can be recasted as: 
 

 ( ) ( ) ( ) ( ) ( ) TT Tw w w T w T w
x yzxR div dA dA ' dA dAσ σ σ

Ω Ω Ω Ω

⎡ ⎤= ⋅δ = δ = δ − δ⎣ ⎦∫ ∫ ∫ ∫S u u L u E L u  (3.10) 

 
The previous equation can be expanded making use of Eqn.’s 3.5, 3.7 and 3.9, originating a final expression for 
the nullification of Rw with the following form: 
 

 ( )
w w w w

0 1 0 1 2xR 0 ' ' ''∗ ∗= ⇔ + + + + =e e d d dA e A e A d A d A d 0  (3.11) 

 
It can be readily proven that the matrices A in the above equation are integrals over the cross-section of the 
product of a combination of the following matrices: Nw, Ex, Dtan, BPS*, Bx

w and Byz
w. If one considers Eqn. 3.11 

one obtains the linear combination of modal amplitudes that must be respected in order to represent a displaced
configuration that is both compatible and in equilibrium, 
 
3.3. Adopted Formulation for the Element and Sectional Level 
As it was mentioned in the end of section 3.1, the objective of the present formulation is to verify both Eqn.’s
2.5 and 3.11, thus guaranteeing the full equilibrium. In the present work, the common definition of section 
generalized forces is adopted, as well as a nonlinear flexibility method. Such equilibrium approach implies that
the beam equilibrium is immediately satisfied. The purposed element state determination centres on an iterative
solution algorithm based on the transference of residual deformations from the section level to the element
level. This iterative nested phase was first proposed by Taucer et al. [1991], being also explained in Correia et 
al. [2008]. For the verification of Eqn. 3.11 an additional hypothesis is considered, which is the assumption that 
dw is locally constant, i.e. dw is a step function of x, being constant in each integration point. Hence, dw ′= dw ′′=
0 and thus the vector of warping-distortion nodal values dw can be obtained from the knowledge of e* and e*′: 
 

 ( )w 1
0 0 1 '− ∗ ∗= − +d e ed A A e A e  (3.12) 

 
The equivalent shear distortions for the cross-section γ0y and γoz are obtained at each iteration by imposing the 
power conjugacy between the vector of generalized forces s = [N Vy Vz T My Mz]T and the complete vector of 
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generalized deformations e = [ε0 γ0y γoz φx φy φz]T so that dAσ ε
Ω

⋅ = ⋅∫s e . The implementation of the present 

model is still in progress. However, due to space restrictions, not even simple results of linear elastic 
applications are included herein. 
 
4. CONCLUSIONS 
 
Distributed inelasticity line elements, the behaviour of which is obtained from the integration of the response at 
several sectional locations, offer the best compromise between model accuracy and computational cost for the 
analysis of RC structures. The review of the state-of-the-art models of this category that account for shear 
deformation has shown that equilibrium considerations are frequently neglected, either from the ‘inter-section’ 
perspective or the ‘intra-section’ viewpoint. Additionally, the few proposals that account for shear-normal stress 
interaction focus solely on bi-dimensional models, which are considerably simpler. In the present paper a
theoretical formulation of a three-dimensional beam-column element verifying the local form of equilibrium 
and power conjugacy is developed. Equilibrium is strictly verified at the element level through the use of a 
flexibility based formulation, while at the section level a combination of warping-distortion shape functions is
determined in order to nullify the corresponding equilibrium residual. 
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