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ABSTRACT: For the purpose of health monitoring, post-earthquake condition evaluation and safety appraisal 
of existing infrastructures, many structural parameter identification methodologies based on eigenvalue and/or 
mode shape extraction from structural vibration measurement have been proposed. In this study, a general 
structural parameter identification strategy based on neural networks is proposed and the theoretical base for the 
construction of a neural network emulator(NNE) and a parametric evaluation neural network(PENN) is 
explained. A two-story model frame structure on a shaking table is employed as an illustrative structure to 
validate the performance of the proposed approach for structural stiffness identification and damage detection 
using vibration displacement response measurement from laser displacement sensors. Results show that the 
NNE can forecast the displacement of the reference structure with high accuracy, and PENN can describe the 
mapping between an evaluation index and structural stiffness parameter. Compared with results that from 
traditional identification method based on frequencies extraction, the performance of the proposed methodology 
is validated. The proposed algorithm is a general and applicable way in practice for near real-time identification, 
damage detection and structural model updating. 
KEYWORDS: parameter identification, damage detection, neural network, time series, laser displacement 
sensor 
 
 
1. INTRODUCTION 
 
In the past hundred years, there have been frequent natural disasters, such as mud-rock flows, seismic sea waves, 
earthquakes, windstorms and the stretching of new deserts. The disasters have killed millions upon millions of 
people, destroyed countless homes, and wiped out numerous pieces of fertile land. China frequently suffers the 
ravages of natural disasters, such as earthquakes, floods, droughts, windstorms and hailstorms, which have 
adversely affected people's lives. The magnitude 8.0 quake flattened houses, schools and offices of the 
southwestern province of Sichuan on May, 2008 and more than 1,000 aftershocks have been recorded. So it is 
especially important to evaluate the performance of the post-earthquake structures. In recent years, parameter 
identification has become an increasingly important research topic for health monitoring, post-earthquake 
performance assessment and safety evaluation of infrastructures.  
 
In the last two decades, some eigenvalue-based structural parameters identification algorithms have been 
proposed (Chang et al., 2001, Doebling et al., 1998, Lee et al., 1991, Wu et al., 2003). However, it is 
well known that eigenvalues and/or mode shapes extracted from dynamic measurements from traditional 
sensors may be too noise-corrupted to identify low to intermediate level of local damage. On the other hand, 
structural lower frequencies extracted from field measurement are usually insensitive to local damage initiation 
or development or parameter variation.  
 
With the ability to approximate arbitrary continuous function and its parallel computation character, artificial 
neural networks (ANN) provide an efficient soft computing strategy for inverse analysis(Worden et al.,1997, 
Nakamura et al.,1998). In the work by Xu et al., vibration-induced displacement measurements were employed 
to identify beam and truss structures(Xu et al., 2004, 2005, 2007). For lager-scale and complex structures, Wu et 
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al. proposed a decentralized identification methodology using dynamic response measurements with neural 
networks and validated with numerical simulation(Wu et al., 2002). Moreover, with the development of sensing 
technology, it is realizable to measure vibration displacement response of structure using sensing device, like 
laser displacement sensors etc. 
  
In this study, a neural network based structural parameter identification method for multi-degree-of freedom 
(MDOF) structure on shaking table without any mode shapes and frequency extraction has been proposed and 
validated using vibration-induced displacement measurements from laser displacement sensors. The theoretical 
base of the proposed method for structural parameter identification is explained based on the discrete solution of 
dynamic response of the structure. The accuracy, sensibility and efficacy of the proposed methodology are 
examined. Results show that the proposed methodology can identify the inter-story stiffness of the frame 
structure within acceptable accuracy. 
 
 
2. PARAMETERIC IDENTIFICATION METHODOLOGY 
 
 
2.1 Theoretical base 
 
The motion of a linear structure system with n degrees of freedom (DOF) under base excitation can be 
characterized by the following equation, 
 

                                   fKxxCxM =++                                   (2.1) 
 

In case of earthquake excitation, the external force f can be represented as the following equation, 
 

                                     gxMIf −=                                      (2.2) 
 

where the matrices M , C  and nnRK ×∈ , are the structure mass, damping, and stiffness matrices, 

respectively; x , x and nRx ∈ , are the acceleration, velocity, and displacement vectors, respectively; 
nRI ∈  is a unitary vector, gx  represents the excitation acceleration.  

 
Equation (2.1) can be rewritten in state space as the following first-order vector differential equation, 
 

                                      BfAZZ +=                                      (2.3) 
 
where the state vector Z and the system matrix A and B are defined as 
 

                           x
Z

x
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

,
1 1

0 I
A

M K M C− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

,
1

0
B

M −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                     (2.4-2.6) 

 
the discrete time solution of the state equation can be written as, 
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where Zk and Zk-1 are the state variables at time step k and k-1, respectively, T is time interval. From (2.7), it can 
be seen that the state variable at time step k is fully determined by the state variable at time step k-1 and 
excitation acceleration at time step k-1. Moreover, the velocity response at time step k-1 is determined by 
displacement response the at time step k-1 and k-2, so, it is clear that the displacement response at time step k is 
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fully determined by them at time steps k-2 and k-1, and the excitation acceleration at time step k-1.  
 
2.2 Identification procedure  
 
The full procedure for parametric identification by the direct use of displacement response with two neural 
networks can be carried out in three steps as described in Figure 1.  
 
First of all, a finite element model of the object structure to be identified is considered. The purpose of the 
identification is to identify the parameters of the finite element model in form of materials Young’s modulus or 
element stiffness or damping coefficients. 
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Figure 1 Displacement-based parametric identification strategy with neural networks 

 
In step 1, a reference structure which under the same initial conditions, excitations and has the same finite 
element model with the object structure is assumed. The parameters of the reference structure are assumed 
according to the design experience of the object structure. Using the displacement response of the reference 
structure that from numerical integration, a neural network emulator(NNE) can be constructed and trained to 
forecast the displacement response step by step for the reference structure as described in the following 
equation, 
 

                           2 1 , 1NNE( , , )f
k k k g kx x x x− − −= , ( 3,k N= )                     (2.8) 

 
where N is the sample number of the structure dynamic response time series. 
 
In step 2, changing the parameters of the reference structure, M associated structures that have the same finite 
element model with the object structure are considered. The dynamic displacement responses of the m-th 
associated structure under the same initial conditions and excitations can be determined by numerical integration. 
If the trained NNE is used to forecast the displacement response of the m-th associated structure, then the 
forecasted value at time step k can be given:  
 

, , 2 , 1 , 1NNE( , , )f
m k m k m k g kx x x x− − −=    ( 1,m M= , 3,k N= )             (2.9) 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 
In this study, assume the stiffness parameters of each associated structured are differ from the reference 
structure, so the dynamic displacement response determined by numerical simulation will not correspond any 
more to the output of NNE. Corresponding to the j-th degree, the difference vector can be evaluated by 
 

( ) ( ) ( )
, , ,
j j f j

m k m k m ke x x= − ,   ( j=1,n )                         (2.10) 
 

Define an evaluation index called the root mean square of the prediction difference vector (RMSPDV). For the 
j-th degree, m-th associated structure, it can be written as  
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On the other hand, it should be a function of structural matrices as described in Equation (2.12),  
 

),,( mmmm CKMfRMSPDV =                           (2.12) 
 
Therefore, a parametric evaluation neural network (PENN) is constructed and trained to describe the mapping 
between the evaluation index and structural parameters as described in the following equation, 
 

)(PENN),,( mmmm RMSPDVCKM =                        (2.13) 
 
In step 3, after finishing the training of PENN, the object structural parameters can be identified by inputting 
RMSPDV of the object structure to PENN with the help of NNE constructed and trained in step 1. 
 
 
3. IDENTIFICATION FOR A MODEL FRAME STRUCTURE AND EXPERIMENTAL VALIDATION  
 
 
3.1Description of the shaking table test 
 
A shaking table test for a two-storey steel frame structure which is selected as the object structure shown in 
Figure 2 was conducted to validate the proposed methodology. The inter-storey height of the frame structure is 
490mm. The structure can be modeled as a two DOF mass-spring-dashpot system as shown in Figure 3. The 
mass of the first and the second floor are 1.16kg and 1.38kg, respectively.  
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The shaking table is excited by sine wave with a frequency of 2.5Hz. The displacement measurements of the 
base, first and second floor are synchronously acquired by three Keyence LB-70(W) laser displacement sensors 
with sampling rate of 1,000Hz. 
 
The model structure was also carried on sweep excitation test and free-vibration decay test. Two natural 
frequencies of the structure are 1.419Hz and 4.333Hz acquired from sweep excitation test as shown in Figure 4,  
The damping ratio of both control frequencies of the structure is 0.4% which presents a light damping. 
    
 
3.2 Architecture and training of NNE 
 
Based on the preliminary estimation of the object structure to be identified, a reference structure is constructed, 
whose inter-storey stiffness parameters for the first and second floor are assumed to be 300N/m and 300N/m, 
respectively. The displacement response of the first and second floor under the measured base excitation is 
determined by Newmark- β  integration method. The integration time step is 0.001s. Take 3 seconds of 
displacement response from time 6.0s to 9.0s as the training data sets, a typical three-layer neural network is 
constructed and trained for displacement forecasting of the reference structure as shown in Figure 5. The 
number of neurons in the input and output layers of the NNE is set to be 5 and 2, respectively. While for the 
hidden layer, it is 6 determined by trial-and-error. The whole off-line training process takes 3,000 epochs.  
 

 
Table 1 Prediction error of NNE 

DOF RMSPDV 
Absolute error/mm 

RMSPDV 
Relative error/% 

1 5.382×10-4 2.166×10-3 
2 3.879×10-4 1.821×10-3 
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Figure 5 NNE 

Figure 6 gives the comparison between the displacement responses determined by the Newmark- β  method 
and those predicted by the trained NNE. The root mean square (RMS) of the difference between the two curves 
and the relative RMS error are given in Table 1. It can be seen that the maximum relative RMS error can reach a 
very small value and the trained NNE is able to forecast the displacement response for the reference structure 
with high accuracy. 
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Figure 6 Comparisons between the displacement responses of the reference structure determined by 
Newmark- β  method and those forecasted by the trained NNE 
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3.3 Architecture and training of PENN 
 
Because the mass of a structure can be known easily and it usually does not change with the occurrence of 
damage, it is usually considered as a known constant. Besides, the damping ratio of the model is very small and 
can be treated as known. Therefore, in this study, it is reasonable that the evaluation index completely depends 
on stiffness parameters. Equation (2.11) can be rewritten in the following form, 
 

( ) ( )mmNn RMSPDVkkk PENN,,,,1 =                      (3.1)  
 

where kn is the inter-storey stiffness of the n-th storey of m-th associated structure. 
 
To generate training patterns, a number of associated structures with different structural properties are 
considered. Let the inter-story stiffness of the first and second floor to be 210N/m, 225N/m, 240N/m, 255N/m, 
270N/m, 285N/m, 300N/m, 315N/m, 330N/m, 345N/m, 360N/m, 375N/m, 390N/m. Therefore, totally 169 
structures are constructed and 121 among them are selected as associated structures randomly.  
 
The displacement response of each associated structure under the measured base excitation is determined by 
Newmark- β  integration method. Using the displacement response of each associated structure from 6.0s to 
9.0s as input to above trained NNE, totally 121 RMSPDVs can be obtained and employed as training patterns 
for the PENN.  
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Figure 7 shows the architecture of the PENN. It is constructed of four layers. The number of neurons in the 
input and output layers is set to be 5 and 2, respectively, and 8 for the two hidden layers by trial-and-error. The 
entire off-line training process for the PENN takes 5,000 epochs. Figure 8 gives the comparisons between the 
target stiffness and the output of the trained PENN and Table 2 gives the relative RMS error corresponding to 
each inter-story. Results show that the trained PENN has enough precision. 
 

Table 2 Relative RMS error of PENN Table 3 Comparisons of the inter-storey stiffness  

DOF RMSPDV relative error/% 

1 4.24 
2 3.89 

 

 Identified by 
PENN(N/m) 

Eigenvalues 
based (N/m) 

Relative 
error(%) 

1st  floor 254.5 245.8 3.54 
2nd  floor 369.7 383.7 3.65 
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3.4 Identification for the object structure 
 
Using 3 seconds of the displacement measurement of the object structure from 6.0s to 9.0s as input to the 
trained NNE, the corresponding RMSPDV are calculated. Then, inputting the RMSPDV to the trained PENN, 
stiffness parameters of the object structure are identified. Table 3 shows the identified inter-storey stiffness of 
the model frame structure and comparisons with results from eigenvalue-based method. It demonstrates that 
identification can be carried out with enough acceptable accuracy. 
 
 
4. DAMAGE IDENTIFICATION  
 
In the frame model studied here, each end of each column is connected to the beam with 3 screws. The number 
1, 2, 3, 4 in the right hand of Figure 9 denote the beam-column joint number. Local damage is introduced by 
loosening some screws of the beam-column joints near to the first floor (mark 2 and 3), as shown in Figure 9. 
Similar shaking table test is carried out for the damage frame structure and the displacement measurements of 
the table, first and second floor are synchronously acquired by laser displacement sensors. 
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Figure 9 Damaged structure 
 

 
With the above mentioned identification methodology, the stiffness parameters of the damaged structure are 
identified using 3 seconds of the displacement measurement of damaged structure from 6.0s to 9.0s.  
 
Table 4 shows comparisons of the inter-storey stiffness of the damaged structure between identified and 
eigenvalues based method. Results show that with the help of two neuron networks, the inter-story stiffness of 
the model structure can be identified with acceptable accuracy. Compared with the stiffness of the original 
structure as shown in Table 3, the two inter-story stiffness of the damage structure are reduced obviously by the 
loosening of the connection screws. 
 

Table 4 Comparisons of the inter-storey stiffness 
 Identified by PENN(N/m) Eigenvalues based (N/m) Relative error(%) 

1st floor 143.2 137.5 4.15 
2nd floor 237.5 228.9 3.76 

 
 
 
5 CONCLUSIONS 
 
In this paper, a direct parametric identification methodology using displacement measurements with neural 
networks is proposed. The rationality and the implementation of the methodology are explained and the theory 
basis for the construction of NNE and PENN are described. The performance of the proposed strategy is 
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evaluated using displacement measurements from laser displacement sensors for a model frame structure on a 
shaking table. Structural inter-storey stiffness identification results show that the proposed methodology can 
identify the inter-storey stiffness of the frame structure within an acceptable accuracy when displacement 
response time series are employed. The strategy does not require the extraction of structural dynamic 
characteristics such as frequencies and mode shapes from measurement and can be an applicable method in 
practice for near real-time structure model updating and post-earthquake damage detection. 
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