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ABSTRACT : 

Recently, as the structural design has shifted to the performance design, seismic design considering 
soil-structure interaction becomes more important. In this study, it is examined at first the difference between 
the frequency domain analysis and the time domain analysis. As a result, it was confirmed that frequency 
domain equivalent linear method is able to be applied to dynamic response analysis of steel structure, when the 
input earthquake motion is small. On the contrary, RC structure, with larger mass and higher stiffness, is 
subject to the larger effects of soil-structure interaction, and the results of the different modeling don’t coincide
well with each other. It needs more extensive meshes or sophisticated boundary conditions for such structure.
Moreover, when extensive foundation soils become nonlinear due to strong earthquakes such that all nonlinear
domains are not contained in FEM model, usual viscous boundary conditions cannot absorb outgoing wave
well. The efficient PML boundary is proposed for linear and nonlinear FEM analysis. The analytical results are 
compared with those of extensive meshes and these results agree well. It shows good performances of these
boundary conditions. 

KEYWORDS: Soil-structure interaction, Analytical method, Boundary condition, FEM model, 
PML boundary 

 
1. INTRODUCTION  
 
The South Hyogo prefecture Earthquake in 1995 caused extensive damage to structures such as bridges, 
underground structures, harbor equipments and lifeline facilities, etc., and exerted large influences on the 
seismic design methods that had been enacted afterwards. Recently, as the structural design has shifted to the 
performance design1), seismic design considering soil-structure interaction is requested more through 
development of the computer technology and higher-need of realistic strain analysis.  
There are two methods of seismic response analysis, frequency domain analysis and time domain analysis. 
Engineers should properly select analytical method to be used. In the FEM analysis, it is necessary to set the 
boundary condition to be able to model the ground that extends infinitely. However, the choices are limited 
when we use existing analysis tools, so we have to model large ground area, resulting in high computational 
cost2).  
In this study, the effects of the boundary condition and the range of modeling in the ground area on the response 
were examined firstly. Then, it is shown to be able to reduce the range of modeling in the ground area by 
proposed PML boundary.  
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2. ANALYTICAL METHOD AND BOUNDARY CONDITION  
 
By discretizing space, simultaneous partial differential equations concerning coordinates and time are replaced 
by simultaneous ordinary differential equations with respect to time, and we obtain following simultaneous 
equations of multiple degree of freedom system in matrix form.  

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tftuKtuCtuM =++ &&&                            (2.1) 
Usually we cannot solve them rigorously because they are simultaneous ordinary differential equations though 
they are similar in form to the motion equation of single degree of freedom system. In numerical time 
integration using Newmark’s β method etc., they are replaced by simultaneous algebraic equations to solve it. 
On the other hand, by Fourier transforms of Eq.2.1, it is obtained the following Eq.2.2 that are complex 
simultaneous algebraic equations.  

[ ] [ ] [ ]( ) ( ){ } ( ){ }ωωωω FUKCiM =++− 2                           (2.2) 
It is assumed to apply unit harmonic external force on each degree of freedom at a time, then, external forces of 
right side can be expressed as unit matrix [I], and the obtained solution becomes transfer function matrix [H(ω)] 

[ ] [ ] [ ]( ) ( )[ ] [ ]IHKCiM =++− ωωω 2                             (2.3) 
Then, time history response {u(t)} is obtained as 
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                            (2.4) 

Moreover, while damping is uniquely determined from h~γ relationship in frequency domain analysis, the 
velocity proportional damping and the hysteresis damping usually exist in nonlinear behavior. It is difficult to 
express the frequency dependence of damping by velocity proportional damping, though the Rayleigh damping 
is widely used3),4),5),6).  
As to the boundary condition, viscous boundary absorbs incidence energy of wave motion by a viscous stress in 
the boundary. However, the influence of the subgrade reaction that acts on the boundary is not clear because the 
viscous boundary absorbs the wave energy only by viscous stress. The frequency independent viscous boundary 
can be applied to the body wave (primary wave and secondary wave, etc.), but the viscous boundary that 
absorbs the surface wave, which exerts large influence by spreading of the wave energy in the ground level, 
must be functions of the frequency. Because the viscous boundary should be set at the distance in the same 
order as wavelength of Rayleigh wave from structure for base excitation, the computational data is huge to 
discretize using the FEM.  
On the other hand, in frequency domain analysis, rigorous boundary conditions can be derived based on 
theoretical solution when foundation soil is discretized vertically. The boundary is called the energy 
transmission boundary.  
As previously noted, it is thought to be necessary to examine the analytical methods and boundary conditions as 
above-mentioned, because the FEM analysis will become mainstream in seismic design.  
 
 
3. ANALYTICAL MODEL  
 
3.1. Object structure and modeling method  
In this research, we examined the building shown in Photo 1. The structure is SRC building, 6 layer structure of 
rising 5 stories above the ground and 1 underground story.  
The analytical model is shown in Figure 1. For the building, the element types are different for the above ground 
part, the underground part and the bottom slab. The above ground part is modeled by two dimensional beam 
element. All cross-sectional area and geometric moment of inertia of beams and columns in backward direction, 
are summed, and equivalent values for unit length in backward direction are assigned. Linear plane elements are 
used for the underground part and the bottom part. In addition, the pile foundations are modeled by two 
dimension beam element. Masses and stiffnesses of the pile are summed in the backward direction, and dividing 
them by the backward distance to get two dimensional material properties.  
The properties of foundation are obtained by PS logging as shown in Figure 2 and by triaxial compression test 
as shown in Figure 3. The foundation soil is modeled by plane strain element.  
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                 Photo 1  Object building                              Figure 1  Analytical model 
 
 
 
 
 
 
 
                                                                     Figure 3  Triaxial compression test 
 
 
 
 
 
 
 
 
 
                  Figure 2  PS logging data 
 
                                                                        Figure 4  Input earthquake motion 
 
3.2. Earthquake observed in object region  
The seismograph is set up in the object structure and the ground right under, and the seismic observation has 
been conducted7). The validity of the analytical model was first examined through comparison with the 
earthquake observation record.  
The input earthquake motion is shown in Figure 4. This earthquake wave was observed with the seismograph in 
this building right under on July 23, 2005.  
 
 
4. EFFECTS OF ANALYTICAL METHOD AND MODELING OF GROUND AREA ON THE 
OBSERVED EARTHQUAKE RESPONSES  
 
The validity of an analytical model is verified by using the observed earthquake responses. The response values 
calculated by the analysis are compared with those observed with the seismograph set up in the building. Two 
kinds of the analytical methods, the frequency domain analysis and time domain analysis were executed, and the 
validity of the boundary condition etc. was verified.  
The boundary condition on the side is the viscous boundary or the energy transmission boundary and the 
stress-strain relationship of the ground as shown in Figure 3 is used in the frequency domain analysis. In time 
domain analysis, the viscous boundary was similarly assumed, and τ-γ curve model of Hardin-Drnevich was 
used as the nonlinear model of the ground. Numerical integration was conducted using the integration method of 
Newmark’s β method (β=0.25). The time increment was set to be 0.005 seconds and 2% damping was assumed 
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for the building and the pile (two dimension beam element) in the both methods. Rayleigh damping parameters 
are set using the main modes obtained by the eigenvalue analysis in time domain analysis. As for the analytical 
code, SuperFLUSH is used for the frequency domain analysis and DIANA is used for the time domain analysis.  
 
 
 
 
 
 
 
 
 
 

Figure 5  Comparison between observation value and analysis value 
 
The analytical results are shown in Figure 5. The validity of the analytical model was examined by comparing 
the results of the response analyses of the frequency domain analysis and time domain analysis with observed 
ones. Agreements of computed results with observed ones are fairly good, though some differences are seen in 
the peak value of acceleration, which are considered to result from some damping discrepancy. Both analytical 
results in the frequency domain analyses and in time domain analysis are in good agreement. The generated 
strain in the ground is small because the energy of the input seismic motion is small, and it shows the frequency 
domain analysis (equivalent linear analysis) is good enough because the structure responses are within the range 
of elasticity.  
The results of two kinds of boundary condition on the side, the energy transmission boundary and the viscous 
boundary, were almost the same in the frequency domain analysis. The results were also the same for the roller 
boundary and the periodical boundary in the time domain analysis when the building is SRC.  
In addition, the influence of the range of modeling in the ground area was examined. The range of 40m was 
shown in Figure 1. The range of 10m, 20m and 40m from both ends of the building was modeled as the ground 
area. The effect of range on the response was small. The details of the result for comparative study are described 
in the next chapter.  
 
 
5. EFFECT OF MODELING GROUND AREA WITH DIFFERENT SOIL-STRUCTURE 
INTERACTION  
 
5.1. Modeling method of RC building  
The influence of the modeled ground area on the analytical result is examined for the case, where the structure is 
changed from the current SRC building to the RC building, which has higher stiffness and larger mass. The 
stiffness and the mass of the RC building were calculated based on Building Code. The viscous boundary is set 
as a boundary condition. Analytical methods and other conditions are same as preceding chapter. 
 
 
 
 
 
 
 
 

Figure 6  Time history of top        Figure 7 Comparison of the time histories      Figure 8 Comparison of the time histories 
of RC building (ground: 40m)           of top of the RC building                  of top of the SRC building 

 
5.2. Analytical result  
The analytical results are shown in Figure 6. The responses decrease more rapidly than those of SRC building. It 
is considered that the dynamic interaction is larger than that of SRC building due to larger mass and stiffness of 
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RC building. The responses between 15 sec and 20 sec of ground ranges 40m, 20m, and 10m were shown in 
detail in Figure 7. The results for the SRC building were similarly shown in Figure 8. It is clear that the 
influence of the ground area are larger for RC building compared to the SRC building. It is supposed that the 
influence of the boundary conditions on the behavior of the structure is larger for RC building than for SRC 
building.  
 
 
6. EFFECT OF MODELING GROUND AREA FOR NONLINEAR RESPONSE  
 
The influence of the ground area on the response is examined for the cases where the ground showed strong 
nonlinearity. The input seismic ground motion used is the record of the Kobe Port Island strong-motion 
seismograph (NS direction) in the South Hyogo prefecture Earthquake. The object structure is the RC building, 
and the Takeda-model is adopted for the nonlinear model of the material. The boundary condition used is the 
viscous boundary.  
The acceleration time history of the top of the building, and 1F floor (A, B in Figure 9), as well as, the strain 
time history of the soil element (element C) which is right under the building are examined.  
The response acceleration time histories between 15 sec to 20 sec of the building are shown in Figure 10 and 
Figure 11. The difference of the responses with the different the ground area is larger, because the ground shows 
strong nonlinearity due to the strong seismic motion and causes stronger interaction, and the building becomes 
also nonlinear.  
The strain history curves of the ground are shown in Figure 12 ~ Figure 14. They also show the effect of range 
of the ground. It is considered that the effect of the range of the ground become larger as soil-structure 
interaction and nonlinearity of the ground or the structure get enhanced. It means that more sophisticated 
boundary such as PML is required if smaller range of the ground is used. The detail of PML is explained in the 
next chapter.  
 
 
 
 
 
 
 
 
 
 

Figure 9  Analytical model and focus points (the case of ground area: 40m) 
 
 
 
 
 
 
 
 
 

Figure 10  Comparison of time histories at top                Figure 11  Comparison of time histories at 1F 
 
 
 
 
 
 
 

Figure 12  τ-γ history curve (C, ground: 40m)                 Figure 13  τ-γ history curve (C, ground: 20m) 
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Figure 14  τ-γ history curve (C, ground: 10m) 
 
 
7. PML BOUNDARY  
 
7.1. PML implementation  
PML is an artificial layer that is placed around the domain of interest, such that outgoing waves from the 
domain don’t reflect at the interface due to the matching of impedances and that the amplitude of waves are 
reduced rapidly within the layer8),9),10). Although PML was initially developed for the analysis of electromagnetic 
waves8), or ultrasonic waves9), where the ratio of traveling distances to wave length is extremely large, 
applications to elastic waves also have been conducted10),11),12). Basu11) formulated PML without field-splitting in 
frequency domain11), which is consistent with FEM, and then developed PML implementation for transient 
analyses, in which unsymmetric tangent stiffness matrix was derived12).  
Here, a formulation of PML for transient analysis of elastic waves is developed, in which tangent stiffness 
matrix is symmetric. Also developed is an implementation for vertically incident waves in FEM and PML.  
As Basu11), we introduce complex coordinate stretching function in frequency domain analysis as:  

0
( )ix

i ix s dsλ= ∫%  

, where ix denotes i th coordinate, and ix% the corresponding transformed coordinate, and iλ  is given as:  
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, where i is pure imaginary number, sc shear wave velocity, b representative length, ω  circular frequency, and 
e

if , p
if  are non-dimensional non-negative continuous functions which are equal to 0 at FEM-PML interface. 

At first, equations for elastic wave are formulated in ix%  coordinate, and then transformed to ix coordinate. 
In two-dimensional case, it is written as11) :  
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, where ijσ , ju , ijε  are Fourier transforms of ijσ , ju , ijε , components of stresses, displacements and strains, 

respectively, and ijklC components of elastic tensor, ς  damping constant. Inverse Fourier transform of these 
equations gives equations in time domain12).  
We develop weak form formulation in time domain, in which symmetric tangent stiffness matrix is derived. 
Let tΔ  be time increment, 1n nt t t+ = + Δ , ( )f t  be an arbitral function, and ,γ β  be constants in Newmark 
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integration formulae. Then it can be assumed as:  
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, where superscript n indicates value at time n tΔ , Σ , Ε , U denote integral of stress, strain, and displacemt, 
respectively, and j denotes other value than j. Let iw be i component of weighing function, and we get weak 
form equations as:  
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domain, respectively. Inserting Eq.7.4.2, Eq.7.4.3 into Eq.7.5, we get equations for 1n
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Introducing shape functions and discretizing the equations, and noting that weighing functions are arbitrary, we 
get equations for nodal displacements. Since the value of ijklC  doesn’t change if we change ij for kl mutually, 
tamgential stiffness matrix is symmetric.  
When both ( )e

i if x , ( )p
i if x  equal to 0, resulting equations coincide with those for FEM.  

 
7.2. Incident wave implementation  
We assume incident wave is traveling in ix direction. Within the domain where 1iλ = , we set layer of 1 mesh 
width in ix direction. Whole domain is divided by the layer into two part, i.e. object part and outer part. We 
assume in the layer, and in the outer part, superposition of stresses and displacements are possible. In object part, 
both incoming incident wave and scattering waves are considered, while only scattering waves are considered in 
outer part. In the layer, at nodal points on object part-layer boundary, both incident wave and scattering waves 
are considered, and only scattering waves are considered at nodal points on outer part-layer boundary. Incident 
wave is assumed to be known.  
In calculating nodal forces of nodal points on object part-layer boundary, displacements corresponding to 
incident wave are added to those of nodal points on outer part-layer boundary. On the other hand, displacements 
etc. corresponding to incident wave are subtracted from those of nodal points on object part-layer boundary in 
calculating nodal forces of nodal points on outer part-layer boundary.  
We denote displacement due to incident wave e

iu , and the corresponding stresses and its integrated value 

,e n e n

ij ijσ Σ . iFα , the nodal forces at nodal point α due to the incident wave displacement e
iu , is given as:  
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, where Nα is shape function for nodal point α. This force is added for nodal points on object part-layer 
boundary, where e

iu , ,e n e n

ij ijσ Σ correspond to nodal displacements on outer part-layer boundary due to incident 

wave, while it is subtracted for nodal points on outer part-layer boundary, where e
iu , ,e n e n

ij ijσ Σ correspond to 
nodal displacements due to incident wave on object part-layer boundary.  
 
7.3. Numerical example  
Responses of layered soil to vertical surface loading are calculated using small mesh with PML model, small 
mesh with viscous dampers, and extensive mesh. In Figure 15, small mesh model is illustrated. 

(7.7)

(7.8)
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Only right half is modeled, taking advantage of symmetry 
of the problem. In the model, all values are 
non-dimensional. Material properties are given in Table 1. 
Four nodded quadrilateral elements with linear 
interpolation functions are used. Size of each element is 
1x1. Ricker wavelet, 

22 -(t/T)f(t)= π{1-2π(t/T) }e /T  with 
T=0.5 is applied on the surface. Implicit integration of 
Newmark family with 0.5, 0.25γ β= =  is used for 
response computation. Time increment is 0.01. The 
responses of layerd soil at A to D are shown in Figure 16 ~ 
Figure 19. In those figures, ‘reference’ denotes responses 
of extensive mesh in which reflected waves do not come 
back during computed time, ‘viscous’ denotes viscous 
dampers. The performances of PML are shown to be better 
than those of viscous dampers.  
 

Table 1  Material property 
 
 
 
 
 

                                               Figure 15  Soil model 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16  Response at A (layered soil)             Figure 17  Response at B (layered soil) 
 
 
 
 
 
 
 
 
 
 
 

Figure 18  Response at C (layered soil)              Figure 19  Response at D (layered soil) 
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7.4. Improvement of PML  
The PML with complex coordinate stretching function given in Eq.7.2 may produce some error, when ω  is 
small. We consider the following coordinate transfer function which has no singularity along real ω  axis.  

i
ii
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k
i

σ
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α ω
+

+
　 ＝  

, where iiik ασ ,,  are functions of ix  only. Then equations of motion in PML are given as:  
2 1 ij

i
j j

u
x
σ

ω ρ
λ

∂
− =

∂
　  

And strains are given as:  
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Stress-strain relationship is assumed as:  
ij ijkl kl ijpqrsmn pq rs mnC f D f f fσ = +　 　  

In two-dimensional problem, multiplying Eq.7.10 with 1 2λ λ , we obtain the following equations.  
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Using inverse Fourier transform, we obtain:  
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, where ＊ denotes convolution integral. Similarly, from Eq.7.11, we obtain:  
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For linear problem, above equations can be expressed as:  
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, where 21, ggDItkg jjj ′′=Δ+=′ σθ . Again, we obtain symmetric tangent stiffness matrix.  
 
7.5. Numerical example  
We consider one dimensional rod shown in Figure 20. The stress-strain relationship is assumed as  

))(2( 3
111111 bffG ++= λσ . 

Other parameters are assumed as:  

1 1 1, , 1 ,MAX MAX MAX
P P P

x x x
L L L

α α σ σ κ κ= = = +    

 1,MAXα = 10,MAXσ = 10MAXκ =  
, where origin of x  is set at PML-FEM interface. We impose displacement at the left end of the rod. The 
displacement is time-harmonic with amplitude /10,π  period 10, and duration 110. Mesh length is 1, 100L = , 

30PL = , 300,b =  0( )or Linear　 , 1,ρ =  0,λ =  12.5G = . Time histories at x=0 are shown in Figure 21 
and Figure 22 along with those obtained with viscous dashpots set at right end. While performance of viscous 
dashpot is excellent in linear case ( 0b = ), reflected wave is much smaller with PML than with viscous dashpots 
in nonlinear case ( 300b = ). 
 
 
 
 
 
 

Figure 20  1-D model 
Figure 21 Comparison of displacement    Figure 22 Comparison of displacement 

(linear)  T=15                       (nonlinear)  T=15  
 
 
8. CONCLUSIONS  
 
Two kinds of the analytical methods, the frequency domain analysis and time domain analysis were used, and 
the validity of the boundary condition etc. was examined. Analytical results for SRC building both in the 
frequency domain analysis and in time domain analysis are in good agreement with observed ones. The 
generated strain in the ground is small because the energy of the input seismic motion is small, and the 
frequency domain analysis (equivalent linear analysis) is shown to be good enough because the structure 
responses are within the range of elasticity. The effect of range on the response was also small.  
The effect of the modeled ground area on the analytical result of RC building, which has higher stiffness and 
larger mass, is larger than those for SRC building.  
When larger seismic motion is applied, the difference of the responses with the different the ground area 
becomes larger, because the ground shows strong nonlinearity and the building becomes also nonlinear. It is 
considered that the effect of the range of the ground become larger as soil-structure interaction and nonlinearity 
of the ground or the structure get enhanced.  
Simple and Efficient displacement based PML procedures have been developed for application to dynamic 
response analyses of semi-infinite soil-structure interaction problems in time domain. It is demonstrated by 
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numerical examples that the accuracies of the developed procedures are significantly better than that of viscous 
boundaries for both uniform and layered semi-infinite soil. Improved PML is applied to a non-linear problem 
and good performance is observed.  
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