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ABSTRACT : 

This paper presents a mathematical model to describe dynamic response of a rigid block on a circular arc sliding 

surface during an earthquake. The rigid block is under excitations of both horizontal and vertical accelerations. 

The model can be considered an extension of the well-known Newmark sliding block model. A numerical 

technique based on a fourth-order Runge-Kutta step-by-step time integration scheme was used to solve the 

derived dynamic differential equation. A computer program was developed following this numerical technique. 

Under a given earthquake motion, the sliding acceleration, sliding velocity, and sliding displacement can be 

obtained for the rigid block on a pre-defined circular arc sliding surface. The model proposed in this paper can 

find many applications, such as seismic analyses of dams and embankments, protection of historic monuments, 

and maintenance of art items in museums. 
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1. INTRODUCTION  
 

Lots of engineering problems can be modeled as a rigid body on a pre-defined sliding surface. The well-known 

Newmark sliding block model has been widely used in evaluation of seismically-induced displacements of earth 

dams and embankment (Newmark, 1965). In the original Newmark model, the sliding mass is rested on an 

inclined plane sliding surface under the excitation of a horizontal acceleration of the base motion. To extend the 

Newmark’s concept, a mathematical model is developed for a rigid block on a circular arc sliding surface. Both 

horizontal and vertical components of the base motion are incorporated in the model.  

 

 

2. FORMULATION  
 

As illustrated in Figure 1, a rigid block on a circular arc sliding surface is subjected to a horizontal ground 

acceleration Ah and a vertical ground acceleration Av. The block has mass M and mass moment of inertia Ic. The 

mass center is at C. The block slides along the circle arc OC, the center of the circle. The radius of the circle is 

denoted by R and the distance between the mass center C and OC is denoted by RC. Displacements of the block 

relative to the base are denoted by x(t) along the arc and y(t) perpendicular to the arc. x(t) is positive in the 

downslope direction and y(t) is positive in the direction towards OC. Angular rotation about OC is denoted by Ψ(t), 

positive in the counter-clockwise (i.e., the block slides downslope) direction. Let θ(t) denote, at time t, the 

inclined angle of the tangential line through point b, which is the point at the bottom of the block on the extended 

line OCC. Suppose at t = 0, θ(0) = θ0.        

 

The inertia forces from the ground excitations and the gravity force are exerted on the block at the mass center, C. 

They can be expressed as Ft in the tangential direction and Fr in the radial direction (positive as shown in Figure 

1).   

 

 θθ cossin et MAMGF +=  (2.1)  

 θθ sincos er MAMGF −=  (2.2) 

where gAG v += , he AA −= ; and g is acceleration due to gravity.   
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Figure 1 Block on a circular arc  

 

Resistance on the interface between the block and the sliding surface is characterized as a Coulomb-type friction.

The coefficients of static friction and dynamic friction are denoted as µs and µk, respectively. The  static friction 

angle and dynamic friction angle for the interface are denoted as φs and φk, respectively. The resultant normal 

reaction force N from the arc and the frictional resistance force Ff are assumed to be exerted at point a, the 

location of which will be determined later. The angel between OCC and OCa is α. 

 

2.1. Rest Mode  

Equilibrium of force and moment about OC leads to  

 

 NMAMG e =−−− )sin()cos( αθαθ  (2.3) 

 fe FMAMG =−+− )cos()sin( αθαθ  (2.4) 

 Cef RMAMGRF )cossin( θθ +=  (2.5)  

So  
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Therefore 

 )]sin(arcsin[)( αθδθα +−+=
R

RC  (2.11) 

 

2.2. Onset of Sliding  

Assuming the body is initially at rest, a slide mode is initiated once the following expressions holds: 

 

 rf FFN =− αα sincos  (2.12) 

 tf FFN =+ αα cossin  (2.13) 

 RFRF fCt =  (2.14) 

  sf NF µ≥  (2.15) 

Therefore 
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where 
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Let 

 θθ sincos/ err AGMFf −==  (2.20) 

 θθ cossin/ ett AGMFf +==  (2.21)  
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Then Eqn. 2.18 becomes 
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or 

 ;sin s
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t f
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f φ≥  for downslope sliding (2.24) 

 ;sin s

C

t f
R

R
f φ−≤  for upslope sliding (2.25) 

 

At the instant of onset of sliding, Eqn. 2.12 through 2.14 hold and  

 

 sf NF µ=  (2.26) 

So 
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where 

 ss φφ =*
; if Eqn. 2.24 holds (2.29) 

 
ss φφ −=*

; if Eqn. 2.25 holds (2.30) 

Thus 
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2.3. Sliding Mode  

Once the block is sliding, the dynamic governing equations of motion are: 

 

 Ψ=− &&
OfCt IRFRF  (2.32) 

 
2sincos Ψ=−− &

Crf MRFFN αα  (2.33) 

 Cft RMFNF Ψ=−− &&αα cossin  (2.34) 

where 
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 )(* Ψ= &Skk φφ  (2.37) 
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 Ψ−= 0θθ  (2.39) 

)(Ψ&S is the signum function in angular rotation velocity Ψ& .  

 

Since  
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From Eqn. 2.43 and Eqn. 2.44, we have 
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Eqn. 2.47 and Eqn. 2.48 lead to  
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or 
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Solving Eqn. 2.53 yields 
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Substituting Eqn. 2.54 into Eqn. 2.42 and solving yield the equation for x&& . Also 
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The absolute accelerations of the block at the mass center C in the X and Y directions are 

 

 θθ sincos
2

C

hbh
R

x
xAA

&
&& ++=  (2.56) 

 θθ cossin
2

C

vbv
R

x
xAA

&
&& +−=  (2.57) 

 

The sliding displacement in the tangential direction, and the absolute accelerations of the block at O” at the upper 

corner of the block on the sliding surface in the X and Y directions are: 
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where β is the angle of the tangential at O” to the vertical. 

 
Note that the system is not only characterized by the mass and coefficients of friction but also by physical 

dimensions relating to size and shape of the block and the sliding surface, and the initial position of the block. 

 

 

3. COMPUTER PROGRAM DEVELOPMENT  
 

In the development of the computer program, SLIP-C, the dynamic coefficient of friction is assumed to be equal 

to the static coefficient and is taken as a simple constant (φ) during sliding. When the base on which the sliding 

surface is resting is subjected to excitations, Ah and Av, no displacement will take place until the thresholds Eqn. 

2.24 and Eqn. 2.25 are satisfied. From that time until the sliding stops, the motion is obtained by solving the 

dynamic equations (2.42) through (2.54). Integration of the velocity-time plot yields the sliding displacement of 

the block.  

 

A fourth-order Runge-Kutta step-by-step time integration scheme (Hildebrand, 1974) was used to solve the 

dynamic equations. In doing so, these equations are written as a set of two first-order, ordinary differential 

equations (ODE) in the x and x& .  

    

 

4. PARAMETRIC STUDIES  

 

The problem concerned is shown in Figure 2, where the sliding block is a circle segment o”bo’eo”.  

   

 
(a) Geometrical configuration 

 
 

(b) Force diagram 

 

Figure 2 Problem concerned in parametric studies  

 

 

The independent geometric parameters are R and h/R. Once h/R is known, R/RC and Ri/RC can be obtained from 
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In this problem, the input motion is horizontal excitation only defined by a sinusoidal function, Ah(t) = 

-Amsin(2πft); amplitude Am = 0.5g, frequency f = 2 Hz, and duration Td = 0.5 sec. 

 

R is set to 120 m to study the effect of 
R

h
, which is chosen as: 0.05, 0.1, and 0.2. Using the computer program 

SLIP-C, the response of the block is computed and the results are shown in Figure 3. It is found that they are 

sensitive to 
R

h
, especially the angle α (or Alpha in Figure 3a), sliding velocity and sliding displacement. 

 

 

5. CONCLUSIONS  
 

A mathematical model has been developed to describe dynamic response of a rigid block on a circular arc sliding 

surface during an earthquake. All the equations have been derived in details and a computer program have been 

developed. Parametric studies have been performed using the computer program to investigate the effect of a key 

parameter h/R on the overall dynamic behavior. The developed mathematic model can represent the dynamic 

response of a rigid block on a circular arc sliding surface during an earthquake. It can find many applications, 

such as seismic analyses of dams and embankments, protection of historic monuments, and maintenance of art 

items in museums. 

 

 

6. ACKNOWLEDGEMENTS  
 

The author sincerely thanks the late Professor Ronald F. Scott of California Institute of Technology (Caltech) for 

his guidance during the author’s graduate study at Caltech. Appreciation is also extended to Professor John Hall 

of Caltech for the constructive discussions on the work presented in this paper.   

 

 

REFERENCES  
 

Newmark, N. M. (1965). Effect of earthquakes on dams and embankments. Geotechnique 15:2, 139-160.  

 

Hildebrand, F. B. (1974). Introduction to Numerical Analysis, Dover Publications, New York, U.S.A.  

 

 



The 14
th  

World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  
 

 

 
 

 
(d) 

 
(e) 

 

Figure 3 Parametric studies: effect of h/R  

 


