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ABSTRACT: 
Dynamic progressive collapse analysis faces a great number of obstacles that often lead to the collapse of the 
analysis prior to the actual analysis of collapse. Hence, it is argued here that a robust analysis framework should be
adopted and modified to account for the different stages of collapse. The Mixed Lagrangian Formulation (MLF)
that was shown to be very robust and to scale very well to large scale problems was, thus, adopted as a framework
to accommodate such analysis. This approach allows the analysis of structures in the elastic and in the plastic range
while automatically considering geometric nonlinearity. It is hence natural to extend its capabilities to account for 
strength degradation and fracture, which is the purpose of this paper. 
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1. INTRODUCTION 
 
The earthquake engineering community has tried to avoid the use of complex analyses for the purpose of design. 
The analysis adopted thus usually makes use of static tools or modal spectral analysis that is modified to 
approximate the nonlinear response of buildings. This approach has several limitations. First, the approximate 
analysis might not lead to satisfactory approximations. The severity of this problem is expected to increase as the 
structure is closer to collapse and its behavior becomes more complex. Second, suppose a building was indeed 
designed not to collapse during a given level of earthquakes. Its capacity to sustain stronger earthquakes would 
remain unknown, that is to say, its response to stronger earthquakes is unidentified. This is problematic because 
new approaches for the design of buildings could, perhaps, increase their capacity to withstand stronger 
earthquakes than expected, without a significant increase in their cost. Finally, without a valid analysis tool that is 
capable to predict the seismic behavior of buildings up to collapse, the capacity of existing buildings remains 
unknown, and decisions on the need, level and design of their retrofit remains subjective. For those reasons one 
can conclude that there is no escape from developing an advanced analysis tool to address the issue of progressive 
collapse prediction. 
 
In the sequence of progressive collapse, the structure, or parts of the structure, go through different stages. Some 
parts of the structure can be assumed to be linear elastic at some stages. At a later stage some parts might yield and 
go into the plastic range. As the deformations grow, stiffness and strength degradation may take place, as well as 
possible buckling, and other geometric nonlinear phenomena. Subsequently, sudden strength loss or fractures are 
expected, leading to redistribution of the loads, as well as introducing step forces to the structure. As regions in the 
structure loose their strength, they might be detached from the structure. At the final stage of collapse, these 
detached parts of the structure, or other objects which were not attached to the structure to begin with (such as live 
loads), might hit other parts of the structure and introduce additional impulses or step forces. The different 
phenomena described above pose large difficulties for the analysis. 
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The abovementioned obstacles present in dynamic progressive collapse analysis often lead to the collapse of the 
analysis prior to the actual analysis of collapse. Hence, it is argued here that a robust analysis framework should be 
adopted and modified to account for the different stages of collapse. The Mixed Lagrangian Formulation (MLF) 
(Sivaselvan and Reinhorn, 2006) that was shown to be very robust and to scale very well to large scale problems 
(see Reinhorn et al., 2007) was, thus, adopted. This approach allows the analysis of structures in the elastic and in 
the plastic range, while automatically considering geometric nonlinearity. It is hence natural to extend its 
capabilities to account for strength degradation and fracture, which is the purpose of the present paper. An 
additional motivation for extending MLF to account for fracture is the fact that in cases where fracture is 
considered, traditional structural analysis approaches usually take a negative stiffness into account. This requires 
special treatment and solution methods, such as the arc length method (e.g., Crisfield, 1991), as well as very small 
time steps, and often lead to instability of the analysis. Since MLF uses the forces as the main variables rather than 
the displacements, it retains the robustness that was observed in the plastic analysis. Another advantage of MLF in 
that context is that it makes use of the weak form of the problem over time. Hence, in problems where sudden 
changes are expected in the response of structures, a stable behavior is observed. 
 
 
2. OVERVIEW OF MLF 
 
The MLF was introduced by Sivaselvan and Reinhorn (2006) for the dynamic analysis of elastic-plastic systems. It 
consists of a set of equilibrium equations in the direction of the degrees of freedom, and a set of equations for 
compatibility of velocities in the direction of the impulses of internal forces. These equations, which were attained 
by formulating appropriate Lagrangian and dissipation functions and substitution to the Euler-Lagrange equations, 
have the following form: 

 ( ) 0vB
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PBFCvvM
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∂
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=++
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where v=vector of velocities of the degrees of freedom; F=vector of internal forces; M =mass matrix; 
C =damping matrix; B =equilibrium matrix that transforms the internal forces F into equivalent nodal forces; 
P=vector of external nodal forces; A=flexibility matrix; ( )Fϕ =dissipation function due to plasticity; 0=a zero 
vector; t = time; a dot represents a derivative with respect to time and the superscript T represents the transpose of 
a matrix. 
 
The left hand side of the first of these equations is comprised of the inertia forces, the damping forces and the 
internal forces, respectively, while the right hand side has the external forces. In the second of these equations the 
first term on the left hand side is the rate of the elastic part of the displacements in the direction of the internal 
forces, the second term is the rate of the plastic displacement and the third is the total rate of displacement in this 
direction. Thus, the first set represents dynamic equilibrium, while the second set constitutes compatibility of 
velocities. It has been shown (Sivaselvan and Reinhorn, 2006) that these equations also hold when the matrix B is 
a function of the coordinates, u, i.e. when geometric nonlinearity is considered. 
 
The MLF was introduced for a general case in which the mass and damping matrices may be singular. For the 
purpose of providing a sketch of the derivation of the MLF, the mass matrix will be assumed nonsingular. 
Equations 2.1 are first discretized at time i+½ by using the central difference approach. The velocities at time n+1, 
vn+1, are then isolated from the discretized version of the first of Eqn. 2.1 and substituted to the second of Eqn. 2.1
to result in the following equation for Fn+1: 
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where the A  matrix and b  vector are known at the time step of computation. Following the derivation by 
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Sivaselvan and Reinhorn (2006), one can integrate Eqn. 2.2 with respect to 1+nF  to obtain the following 
optimization problem for the time step n: 
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3. STRENGTH DEGRADATION AND FRACTURE IN MLF 
 
In the derivations to follow we modify the dissipation function and the numerical scheme, and extend the 
capabilities of MLF to account for strength degradation and fracture through “shrinking” the yield surface. Some 
insight to the MLF behavior in the case of fracture is introduced as well. For the sake of simplicity the main idea of 
“shrinking” the yield surface is demonstrated by using a simple case of “one-dimensional” plasticity of a single 
spring element. The methodology, however, has been successfully applied to the case of multidimensional 
plasticity. 
 
3.1. “Shrinking” the yield surface  
In the case of an elastic perfectly plastic element, the function ( )Fϕ  takes the form: 

 ( ) ( )
( )
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i e f

i e f
ϕ

<
=

∞ ≥

⎧
⎨
⎩

F
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where f can be thought of as the loading function of the member or the plastic hinge. This representation in MLF 
actually constrains the force vector, F, to be in the feasible region (elastic or plastic). This concept, as well as the 
concept of “shrinking” the loading function, could be easily illustrated by using a single one dimensional element 
model. Here, the function f is simply f(F)=|F|-Fy, where Fy is the yield level of this force. The dissipation function 
is, thus, zero in the elastic range, i.e. when f(F)=|F|-Fy<0 and becomes infinite when f(F)=|F|-Fy=0. The case where 
f(F)=|F|-Fy>0  is actually infeasible and cannot be reached. 
 
Shrinking the yield surface in this case could be easily obtained by reducing the value of Fy. In this case the upper 
bound on F that results from the constraint in the optimization problem of Eqn. 2.3 and the dissipation function, is 
reduced, and strength reduction is achieved. For the function f presented earlier, the change of strength is isotropic. 
Different rules, however, can be adopted by modifying this function. The function f(F)=(F-Fy

(-)))(F-Fy
(+)) for 

example, could result in an anisotropic rule by changing Fy
(-) and Fy

(+) according to different criteria and, of course, 
similar techniques could be applied to the multidimensional case. 
 
3.2. Strength degradation versus fracture  
Before starting with the derivations it is important to distinguish strength degradation from fracture. Although both 
phenomena involve reduction of strength, while strength degradation does not involve sudden changes in the 
actual force, fracture does (see Fig. 1). Hence, computationally speaking, fracture is a more complex problem both 
to model and to solve. These large changes in the actual force often make the computational scheme unstable. 
However, since the main variables used by MLF are forces and not displacements, fracture is associated with 
changing the constraints on the forces rather than using a “negative stiffness.” Hence, MLF is expected to be stable
even when fracture occurs. 
 
In the case of strength degradation, as presented by Fig. 1a, the modeling and implementation in the MLF 
framework is straightforward. Since the degradation in this case is dictated by the history of the state variables 
only, but not on their current values, the dissipation function could evolve in each time step based on the past 
behavior of the structure. Moreover, sudden changes in the actual force are not expected. Hence, in each time step, 
the only change from the traditional MLF is the fact that the dissipation function should be updated. The structure 
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of the dissipation function and its dependency on the states at the time n+1, however, remains with no change. It 
should be noted that the conventional displacement based analysis usually has no computational difficulty in this 
case as well. 

F

u

F

u

sudden change
in the force

 
(a)      (b) 

Figure 1 Hysteretic loops with (a) strength degradation and (b) fracture 
 
As opposed to the case of strength degradation, in the case of fracture, the dissipation function depends also on 
current values of the state variables. Hence, the structure of this function and its dependency on the states at the 
time n+1, might change. Since forces are the main variables in MLF, these changes may require some 
modifications. For example, in the one dimensional plasticity case presented earlier, the variation of Fy could 
depend on the maximum displacement experienced by the element up to the current time. This maximum 
displacement itself depends on the displacement at the end of the current time step. This displacement is yet 
unknown and, moreover, is not a variable. Hence, when the dependency involves displacements or energies, 
modifications are required. In addition, the sudden change in the actual force will require some small 
modifications to the numerical scheme. It should be noted that the displacement based analyses tend to become 
unstable when fracture is involved, even when sophisticated and computationally expensive analysis tools are 
applied. The modifications to MLF proposed here, on the other hand, lead to a very stable scheme, as will be 
shown subsequently, with a negligible addition of computational effort. 
 
3.3. Why is MLF so robust in fracture?  
As will be shown by the examples, the MLF scheme is very robust in terms of time step size and stability, even 
when sudden fracture is considered. In this section some insight to the reason for the enhanced robustness is 
presented. In MLF, the main variables used are forces and not displacements, and fracture is associated with 
changing the constraints on the forces rather than using a “negative stiffness”. Hence, in each time step the forces 
are actually attained by solving a constrained optimization problem whose solution is bounded to be in the elastic 
or in the plastic regions. Since the feasible region of the force vector is a closed region, the force vector can not go 
beyond the plastic region and hence does not become unstable. This approach is illustrated in Fig. 2 where the 
optimization problem for a case of a single unidirectional member is shown. 
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(a) (b) 

Figure 2 Optimization problem for a one dimensional plasticity model (a) before strength reduction and (b) 
changing during strength reduction 
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Figure 2a shows the objective function (parabola), the constraint (|F|-Fy≤0), the feasible region (in gray) and the 
optimal solution (dot), right before fracture. Figure 2b presents a similar illustration at the time of fracture. As can 
be seen, “shrinking” the yield surface is associated here with reducing the value of Fy, hence, reducing the upper 
bound on the actual value of F. This results in a drop in the actual force that is actually attained by solving an 
optimization problem. 
 
4. NUMERICAL SCHEME 
 
As an example, the rule considered for fracture is presented in Fig. 3a, where ( )iumax  represents the maximum 
displacement ever experienced by the member/plastic hinge up to the current point in time. 

( )i
yF
( )i

yF 0,

( )i
fyF ,

( )iumax
( )i
fu( )iu0  

Figure 3 Description of strength function 
 
Here Fy depends upon ( )i

nu 1+ , the maximum displacement ever experienced by the member/plastic hinge i at time 

n+1, while the variables used in Eqn. 2.3 are forces. Consequently, Fy is first reformulated in terms of ( )i
nu 1+ , which 

is then evaluated as a function of Fn+1 so that the final result would be Fy(Fn+1). 
 
4.1. Some numerical insight 
In order to understand the numerical issues related to fracture it would be beneficial to first gain some insight to 
the behavior of the problem through the temporally continuous Eqn. 2.1. For the sake of discussion, let us first 
look at a massless spring under a displacement controlled loading with a very slow rate of displacement. Since the 
mass and damping are zero, and the rate of displacement is very small, and Eqn. 2.2 takes the form: 

 0=
∂
∂+
F

FA ϕ  (4.1) 

Equation 4.1 shows that when the internal force drops and F  shows a negative δ (Dirac) function, in order to 
satisfy the compatibility equation, / Fϕ∂ ∂  should have a positive δ function. This type of behavior could be 
generalized to other types of loading and is qualitatively illustrated in Fig. 4a. 
 
4.2. Numerical behavior 
A qualitative behavior of the numerical solution for the same system employed for Fig. 4a, using the traditional 
numerical scheme of MLF with the modified loading function, is presented in Fig. 4b. As can be seen, the drop in 
the internal force in the time step where fracture occurs (from tn to tn+1) seems precise. However, the drop in the 
force seems to somewhat “overshoot” in the time step following the fracture. In order to understand the reason for 
that it is interesting to explore the behavior of / Fϕ∂ ∂  in the discretized solution, which is also presented in Fig.
4b. When fracture occurs, the value of / Fϕ∂ ∂  has to have a “jump” to account for the δ  seen in the continuous 
behavior. This can also be seen from the discretized compatibility equation (discretized version of the second of 
Eqn. 2.1). Here, a large (negative) difference, Fn+1-Fn, and a small time step, h, lead to a large value of 

/ Fϕ∂ ∂ |n+1. For the following time step, the discretized compatibility equation takes the form 
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In order to satisfy this equation with the large value of / Fϕ∂ ∂ |n+1 dictated from the previous step, the value of 
/ Fϕ∂ ∂ |n+2 has to have a very small value and, probably, should change its sign. This parameter is, however, 

restricted in sign since: (a) it is actually the plastic rate of deformation that physically cannot be in an opposite 
direction to the force, and (b) it is actually the Lagrange multiplier in the optimization problem. This variable, 
hence, takes the value of zero which: (a) implies an elastic state, and (b) enforces an additional (negative) 
difference, Fn+2-Fn+1, so as to satisfy the compatibility Eqn. 4.2. This additional difference in forces is actually the 
overshoot seen in the solution of Fig. 4b. 

F

t

t
F∂
∂ϕ

 

F

t

t
F∂
∂ϕ

n n+1 n+2  
(a) (b) 

F

t

t
F∂
∂ϕ

n n+1 n+2  
(c) 

Figure 4 Qualitative illustration of the behavior of a spring during fracture: (a) analytical, (b) numerical 
(continuous line) versus analytical (dotted line), and (c) modified numerical (continuous line) versus analytical 

 
4.3. Numerical modifications 
It is argued here that the value computed for / Fϕ∂ ∂ |n+1 is reasonable and that it takes into account the δ
experienced during the time step in an integral sense. However, this value is not appropriate for use in the next time step,
where the δ  should have no effect. Hence, it is proposed here to use two values for / Fϕ∂ ∂ |n+1; one for the previous 
time step and one for the following time step, as illustrated in Figure 4c. The evaluation of / Fϕ∂ ∂ |n+1 to be used in the 
time step following the fracture relies on the compatibility equation at the time tn+1 and some insight from the theory of 
plasticity. This is actually an important part of the work that cannot be discussed here due to space limitations. 
 
 
5. EXAMPLE 
 
A two story shear frame is chosen to demonstrate the behavior of the problem and the numerical solution. In the 
global DOFs, the mass matrix is a 2×2 identity matrix (i.e., 1 2 1m m= = ), while the damping matrix is a 2×2 zero 
matrix. The flexibility matrix in the forces coordinate system and the equilibrium matrix are given by 

 ⎥⎦
⎤

⎢⎣
⎡

⋅
= 10

01
42
1

2π
A       ;      ⎥⎦

⎤
⎢⎣
⎡ −= 10

11B  (5.1) 

The external force vector is taken as ( )ga t= −P M1 , where 1 is a unit vector of appropriate size and ( )ga t is 

the ground acceleration that is taken here as the LA02 record. This record is actually the Imperial Valley, 1940, El 
Centro earthquake scaled by a factor of 2.01 (Somerville et al., 1996). The model of Fig. 3 was used to describe 
the variation of the yield force and the initial and the minimum yield force vectors are [ ]Ty 43430, =F and 
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[ ]Tfy 8383, =F , respectively. The transition from the initial yield force to the minimum yield force occurs at an 

absolute displacement (inter-story drift) of fiu = ffu =0.021 for both stories. 
 
Figure 5 presents the MLF solutions for several response quantities of the structure versus time for two different 
time step sizes; namely, 0.01 and 0.001. Notice that the results are nearly indistinguishable for these two analyses, 
except during the time step in which fracture occurred. The analysis results show that the first story fractured at 
approximately time 7.0 (Fig. 5b and 5c). 
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Figure 5 Response quantities versus time for 0.01 time step (dashed) and 0.001 time step (continuous); (a) 
External forces, (b) internal forces in the columns, (c) zoom on internal forces in the columns, (d) zoom on 
rate of plastic deformations, (e) zoom on plastic deformations, (f) zoom on accelerations of the masses, (g) 

elastic deformations, (h) rate of plastic deformations, (i) plastic deformations, (j) iteration counts. 
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Figures 5c-5f provide a zoom on the forces, rate of plastic deformations, plastic deformations and accelerations, 
respectively, near the time when fracture occurs. It can be seen that when sudden changes occur in some response 
quantities, they are “smeared” over a whole time step. Hence, with different time steps, a slightly different 
behavior is observed locally. However, when a step function is involved (see, for example, Fig. 5c, 5e and 5f), both 
solutions converge to the same values at the end of the longer time step. Moreover, when δ  functions are 
involved (see, for example, Fig. 5d), the total area under these graphs, or their integral, is equal, as implied by Fig.
5e. Additional interesting observations are related to the physical behavior of the system. As expected, when 
fracture occurs, / Fϕ∂ ∂  shows a δ  function with appropriate area of approximately FA ∆⋅  (Fig. 5c-5e). 
Moreover, the elastic deformation and plastic deformation show an equal and opposite “jump” of FA ∆⋅  (Fig. 5g 
and 5h), such that the sum of these deformations, which is actually the total deformation, remains a smooth 
function (Fig. 5i). In addition, the effect of the fracture of the first story on the acceleration of the first floor mass is 
clearly seen, where, as expected, this acceleration has a “jump” of ∆ F/mi (Fig. 5f). In addition, the direct effect is 
seen on the acceleration of the first story only, as expected, since this force acts on the mass of the first floor only.
From an algorithmic viewpoint, notice from Fig. 5j that the iteration counts for each time step are quite low, even 
for steps involving transitions to plasticity or for those encountering fracture. 
 
 
6. CONCLUSIONS 
 
In this paper a new unified fracture - strength degradation model using strength reduction rather than negative 
stiffness was developed. The consideration of strength degradation and fracture was done by modifying the MLF 
framework through “shrinking” of the yield surface. The derivations were developed for the general case of 
multi-dimensional plasticity. As shown, the structure of the optimization problem and solution of MLF is 
preserved with the addition of the new phenomena. This enables the use of the same optimization schemes through 
all stages of the analysis. The numerical scheme shows robustness, stability and convergence with relatively large 
time steps sizes even when fracture is considered, while still requiring only a small number of iterations. Insight to 
the behavior of the physical problem, as well as to the reason for the enhanced stability of the numerical scheme, 
was also presented.  It was shown that the reason that MLF is so robust stems from the fact that the main variables 
used by MLF are forces and not displacements, and fracture is associated with changing the constraints on the 
forces rather than using a “negative stiffness”. This actually leads to a constrained optimization problem that has a 
closed feasible region in each time step. Thus, the force vector cannot go beyond the plastic region and, 
consequently, the algorithm does not become unstable. 
 
 
REFERENCES  
 
Crisfield, M.A. (1991). Non-linear finite element analysis of solids and structures, John Wiley & Sons, Chichester, UK. 

Reinhorn, A.M., Sivaselvan, M.V., Dargush, G.F. and Lavan O. (2007). Mixed Lagrangian formulation in analysis of collapse 
of structures, Computational methods in structural dynamics and earthquake engineering (COMPDYN2007), Rethymno, 
Crete, Greece. 

Sivaselvan, M.V. and Reinhorn, A.M. (2000). Hysteretic models for deteriorating structures, Journal of Engineering 
Mechanics, ASCE 126: 633-640. 

Sivaselvan, M.V. and Reinhorn, A.M. (2006). Lagrangian approach to structural collapse simulation, Journal of Engineering 
Mechanics, ASCE 132: 795-805. 

Somerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997). Development of ground motion time histories for Phase 2 of 
the FEMA/SAC steel project. Report No. SAC/BD-97/04. (The ground motions can be downloaded from
http://quiver.eerc.berkeley.edu:8080/studies/system/ground_motions.html.) 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


