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ABSTRACT: 
A stochastic method is proposed to evaluate root mean square (RMS) response displacement, expectation 
and standard deviation of maximum value of the single degree of freedom (SDOF) system under transient 
conditions excited by input motion expressed as an arbitrary shape power spectrum density function. 
Accuracy of the proposed method is examined by comparing with the results of Monte Carlo Simulation 
(MCS). 
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1. Introduction 
The RMS response value generally used in random vibration theorem is difficult to use for the intuitive 
recognition of analytical results compared with the maximum response value. This is one of the reasons 
that random vibration theorem does not apply to the design of a structure even though there is high 
potential. Three methods to evaluate maximum response value are: (1) A method to use non-across 
probability derived from the Poisson process1). (2) A method to analytically obtain the peak-factor as a 
ratio of the maximum response value for RMS response value2,3). (3) A method to solve simultaneous 
differential equations concerning RMS response value and maximum response value defined as state 
variables4). (1) and (2) are easily handled, however accuracy may not be sufficient under non-stationary 
conditions because they are based on stationary conditions. (3) has high accuracy and it is possible to 
obtain covariances excluding mean values, however its theorem is complex and calculation time is too 
long. In this paper, a new method is proposed that focuses on related numbers of across and non-across 
probability based on Cartwright's method (1) referenced with the results of MCS. This method may be 
applied in cases when input motion is expressed as a non-stationary power spectral density function and 
when the system has strong non-linearity. The SDOF system excited by non-stationary input motion is 
examined. 
 
2. Statistics of Maximum Displacement for SDOF 
2.1 Outline of Cartwright's Method 
The probability of absolute displacement across threshold level xa with number n between duration T is 
expressed with the following equation (1) using the Poisson process. 
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n+(xa) is the number of across over threshold level xa during unit time. Cartwright1) denotes that the 
Cumulative Distribution Function (CDF) of maximum displacement P(Xmax) is approximately equal to the 
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probability of the non-across threshold level xmax. i.e. the number of across n set to 0 in above. 
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sx, sv are the RMS response values of displacement and velocity. T0 is the natural period of the system. 
Davenport2) proposed a simple method to obtain the mean and variance of maximum response using the 
above feature. Vanmarcke3) attempted to improve this method to introduce a shape factor. However, these 
methods both have the same weak point in that accuracy declines when correlativity in each peak occurs 
over long periods as these theorems are based on the Poisson process. To solve this problem, a method to 
use envelope distribution is proposed. It focuses on the accuracy of the across rate and does not focus on 
the probability of across. These methods are subject to stationary conditions and are not adopted for 
non-stationary conditions including transient response. In this paper, a new method to estimate statistics 
concerning maximum displacement with high accuracy over long periods is proposed. 
 
2.2 Estimation of RMS Response Value for Linear SDOF System 
The RMS Response Value of the Linear SDOF System excited by input motion with an arbitrary shape 
power spectral density function S0(w) is obtained as follows: 
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x,v are the response displacement and velocity of the SDOF system, f is input motion acceleration, E[ ] is 
the operator of expectation, h, w0 are the damping factor and natural frequency of the SDOF system and 
dot denotes differentials for time. RMS responses are ]xx[Ex =s , ]vv[Ev =s  respectively. E[xf], 
E[vf] are expressed as product stationary response and envelope function e(t) shown as follows. 
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H(iw) is the displacement transfer function of the SDOF system 
(=(w0

2-w2+2･i･h･w･w0)-1). The integrals of the above equations 
will be performed only once before the calculation of the equation 
(3). The imaginary part of the integral term is symmetrical to w=0 
and its integral value is real. To evaluate the accuracy of this 
procedure, analysis of the SDOF system with T=1s, h=0.02 should 
be conducted. RMS response displacement sx is shown in Fig.1 
compared with the results of MCS. Both the results of analysis 
and MCS match well. 
 
2.3 Estimation of Statics for Maximum Response Value 
(1) Method 
The probability that displacement does not go across threshold level xa during duration is shown as 
follows5), if the Poisson process is available. 
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It is known that non-across probability for the maximum response displacement P(xa) as shown above 
tends to be close to the CDF of maximum response displacement. To use this feature, the Probabilistic 
Mass Function (PMF) of maximum response displacement are obtained as shown below. The PMF is 
defined at discrete points where its amount is 1 and its shape is analogous to the probabilistic density 
function (PDF). 

 ( ) ( ) ( ) n1i,xPxPxp 1iimaxm =-= - , ( )1ixxx 0i -×D+=   ..... (6) 

xi is the displacement of discrete points and the start point x0 and the interval Dx are selected in an 
appropriate manner. To use this procedure, the mean of maximum response displacement E[Xmax] and 
standard deviation s[Xmax] are obtained as follows. If this procedure is used for a non-linear system, it is 
necessary that the PDF of displacement and the velocity is close to normal distribution. 
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(2) Comparison with MCS 
The number of across over mean maximum response displacement Nc(E[xmax]) examined by MCS for 5 
different input motions is shown in Fig.2. Power spectrum density function of input motion is indicated at 
the corner of each graph. Analytical models are the Linear SDOF system with a damping factor of h=0.05. 
The duration of input motion is 60s and Jennings's envelope function is used. The results of analytical 
solutions derived from the equation below are shown in Fig.2 compared with MCS to verify the accuracy 
of the analytically derived Nc(E[xmax]). Slight flicker of analytical value is caused from scatter of threshold 
level E[xmax] calculated by MCS. 
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Table.1  Relation between P(E[xmax])  
and Nc(E[xmax]) from Eq.(5),(8) 

Non-across Probability 
for E[xmax]  
P(E[xmax]) 

Number of Exceed  
for E[xmax] 
Nc(E[xmax]) 

0.368 1.000 
0.550 0.598 

 

Equation (8) is equivalent to the inner part of the exponential term in equation (5) and directly relates to 
the accuracy of non-across probability P(xa). In Fig.2 a - e, the number of across over mean maximum 
response displacement Nc(E[xmax]) is about 0.6 over a short 
period and increases to 1.0~1.5 as the period lengthens. Both 
the results of analytical solutions and MCS generally agree. 
Non-across probability P(xa) shown in Fig.2 f is about 0.55 and 
does not have period dependency under any circumstances. The 
relationship between non-across probability P(E[xmax]) and 
number of across Nc(E[xmax]) is shown in Table.1. Nc(E[xmax]) 
is about 0.6 and corresponds to the value 0.598 substituting 
P(xa)=0.55 to equation (5) for any cases over a short period. 
However, this relationship is not recognized over long periods because the Poisson process is not 
approved. The shape of Nc(E[xmax]) is proportional to the shape of the spectral density function S0(w) of 
input motion. It is considered that there is some correlation between Nc(E[xmax]) and input motion. 
 
(3) Correction for Number of Across Nc(E[xmax]) 
In acceleration time history when the long period component is dominant, across over threshold level 
continuously occurs. The Poisson process is applied on the assumption that each across that independently 
occurs is not approved. In this case, to avoid a reduction in precision, envelope distribution is sometimes 
used as the PDF of the extreme value of peaks5). However, it is not possible to improve non-across 
probability P(xa). In this paper, non-across probability as shown in equation (5) is modified to fit the 
results of MCS. To use coefficient a as shown in equation (10), a large value of Nc(E[xmax]) over long 
periods maintains the same level over short periods. Non-across probability P(E[xmax]) as shown in 
equation (5) will be approximately available in all periods. These are shown as follows and in Fig.3. 
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The number of across Nc(E[xmax]) for each of the above cases and coefficient a divided by 0.598 
corresponds to the value over short periods. The Poisson process is available as shown in Fig.4. To apply 
coefficient a, the number of across Nc(E[xmax]) is modified from a solid line to a broken line.  
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The PDF of maximum displacement converted from PMF for the SDOF system with T=0.1s, 1.0s and 
h=0.02 using this procedure is shown in Fig.5 and 6. The result of analysis is slightly higher than MCS 
and both PDF shapes fit well in each case. In Fig.5, the case that is not used with the above coefficient a is 
also shown. If coefficient a is not used, the differences between analysis and MCS are larger than cases 
when coefficient a is used.  
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   Fig.5 PDF of maximum displacement (T=1s) Fig.6 PDF of maximum displacement (T=0.1s) 
 
3. Statistics of Maximum Displacement for SDOF under Non-stationary Input Motion 
3.1 Numerical Results utilizing Past Observed Records 
The above procedure to evaluate the mean and variance of maximum displacement will be available for 
non-stationary input motion and non-linear systems even if the PDF of response displacement and velocity 
are remarkably different to those of normal distribution. In the case of non-stationary input motion, the 
precision of this procedure is examined. In this paper, non-stationary property of input motion is expressed 
as the evolutionary power spectrum (EPS) function as shown below6). 

 ( ) ( ) ( ){ }2223
00 tvtxh2t,S w+×w××=w      ..... (12) 

x(t), v(t) are the displacement and velocity time history of input motion. h0 is the parameter related to the 
smoothness of the EPS function and is normally 0.05. The RMS response of the system is obtained to 
perform the integration of equation (3) after equations (4) replace equations (13) as shown below.  
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Amplitude components extracted from past observed records are used for input motion Hachinohe NS 
(HCN) that was observed in the 1968 Miyagiken-oki earthquake and Fukushima EW (FKS) that was 
observed in the 1997 Hanshin great earthquake. EPS function for HCN and FKS obtained from the above 
procedure is shown in Fig.7 and 8. Non-stationary property where some peaks occur at different times or 
frequencies is clearly recognized in both records. 3 Samples of acceleration time history synthesized from 
these EPS functions to use MCS using the equation below are shown in Fig.9.  

 ( ) ( ) ( )iii0
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     ..... (14) 

f(t) is the acceleration time history, wi is discrete frequency, Dw is the frequency interval, fi is phase as a 
uniform random number with a range of 0~2p, N is the amount of summation cos waves. Time history 
obtained from this procedure shown in Fig.9 is very similar to the original observed time history shown in 
Fig.7. Max acceleration value 2.059~2.270m/s2 is similar to the value of the original record of 2.327m/s2.  
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    Fig.7 EPS Function (HCN)   Fig.8 EPS Function (FKS)     Fig.9 Sample of input (HCN) 
 
The PDF of maximum displacement converted from PMF for the SDOF system is shown in Fig.10 and 11. 
The results of analysis are slightly higher than MCS in all cases and the shape of the PDF fits well in all 
periods. However, when input motion is FKS and the natural period T=1.0s as shown in Fig.10, 
differences between analysis and MCS for the shape of the PDF are large compared with other cases. In 
Fig.2, Nc(E[xmax]) has some small peaks when the period input motion is dominant. Small errors occur at 
the points of these small peaks because coefficientαis smoothly set as the average of MCS for various 
input motion spectrums. 
The mean and variance of the acceleration response spectrum obtained from the above procedure is shown 
in Fig.12 compared with the results of MCS. Both the results of analysis and MCS fit well in any period 
but slight errors occur at the top of peaks. Peak factor is shown in Fig.13. Values of the peak factor for 
input motions HCN and FKS is about 2 - 3 and tend to decrease with the period the same as in stationary 
input cases.  
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3.2 Numerical Results for Input Motion synthesized from Modeling Faults 
The above procedure applies to the input motion case which is synthesized to use modeling faults by the 
Statistical Green's Function method (SGF) tends to recognize its efficiency by simulation analysis for 
observed records. Input motion fm(w) is obtained as below with the SGF method7). 

 ( ) ( ) ( ) ( ) ( )[ ] ( )w*w*w=w*w=w e21em fFFfHf      (15) 

fe(w) is a small event motion expressed as a w -2 model. F1(w) is a function referring to compounded 
sub-faults. F2(w) is a function to correct slip time between faults and sub-faults. *  denotes products in 
the frequency domain. When small event motion is expressed as power spectral density function S0e(w) 
and envelope function e(t), EPS function S0m(w) for input motion fm(w) is as follows8). 

 ( ) ( ) ( )[ ] ( )w*wF*wF=w e0
*

m0 St,t,S       (16) 

 ( ) ( ) ( )ò w×-×=wF
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[ ]1-Á  is the inverse fourier transformation. Subscript * denotes complex conjugations. Input motion is 
synthesized using this procedure and modeling faults are shown in Fig.14. EPS function and RMS 
acceleration derived from its integral across period axis is shown in Fig.15. The parameters of modeling 
faults follows in the reference 9. 
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 a) T=1s   b) T=0.1s    Fig.17 Mean and standard deviation of  
   Fig.16 PDF of maximum displacement (SGF)    acceleration response spectrum 
 
The PDF of maximum displacement converted from PMF for the SDOF system is shown in Fig.16. The 
results of analysis are slightly higher than MCS in all cases and the shape of the PDF fits well in any 
period. The mean and variance of the acceleration response spectrum obtained from the above procedure 
is shown in Fig.17 compared with the results of MCS. Both results fit well in any period but slight errors 
occur at the top of peaks.  
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4. Conclusion 
The proposed method to estimate the mean and variance of maximum displacement excited by input 
motion expressed as an arbitrary shape power spectrum density function under non-stationary conditions 
has been presented. Its accuracy is examined by comparing with the results of MCS. The conclusions are 
shown below. 
 
· The number of across over mean maximum displacement Nc(E[Xmax]) obtained from MCS is about 

0.6 corresponding to the value derived from the Poisson process over short periods. However, it has 
time-dependency and becomes generously large as periods increase. When using the proposed 
coefficient a based on Cartwright's method to reflect this time-dependency, statistics for maximum 
displacement are able to be accurately estimated. 

· When input motion is expressed as an arbitrary shape power spectrum function and an envelope 
function, the method to obtain the RMS response of the linear SDOF System is proposed. When 
using the above procedure, the mean and standard deviation of analysis fit well with the results of 
MCS. 

· When the non-stationary spectrum property of input motion is considered as an evolutionary power 
spectrum function, statistics for maximum displacement examined by the above procedure also fit 
well with the results of MCS. However, the mean of maximum displacement may be different at the 
peak of the input motion spectrum due to coefficient a being smoothly set as an average of MCS for 
various input motion spectrums. 

 
The proposed method will apply to cases in which the system has strong non-linearity unless the PDF of 
response displacement or velocity are severely different to normal distribution. It is necessary to find out 
whether the proposed method is possible or not for non-linearity progress. In this paper, coefficient a that 
modifies non-across probability when the Poisson process is not available is obtained approximately from 
an average of MCS. However, this coefficient should be derived from the analytical method to clarify 
relationships between the number of across and the across mean maximum displacement with input 
motion spectrum. 
 
REFERENCES 
[1] Cartwright,D.E,, Longuet-Higgins,M.S., "The statistical distribution of the maxima of a random 

function", Proceedings of the Royal Society Series, A237, 1956, p.212-232 
[2] Davenport, A.G., "Note on the distribution of the largest value of a random function with application 

to gust loading", Proceeding of the Institution of Civil Engineers, Vol.28, 1964, p.187-196 
[3] Vanmarke,E.H., "Properties of spectral moments with applications to random vibration", 

J.Eng.Mech.Div., ASCE, Vol.98, p.425-445, 1972 
[4] Suzuki,Y., "Seismic reliability analysis of hysteretic structure based on stochastic differential 

equations", Kyoto Univ., 1985 
[5] Lin,Y.K., "Probabilistic Theory of Structural Dynamics", McGrow-Hill Inc, 1967  
[6] Kameda,H., "On a method of computing evolutionary power spectra of strong motion seismograms", 

Japan Society of Civil Engineers, No.235, p.55-62 (in Japanese) 
[7] Kamae,K. and K.Irikura, "Source model of the 1995 Hyogo-ken Nanbu earthquake and simulation of 

near-source ground motion", BSSA, Vol.88, No.2, 1998, p.400-412. 
[8] Perotti,F., "Structural response to non-stationary multiple-support random excitation", EESD, Vol.19, 

1990, p.513-527  
[9] Irikura,K., "Predicting strong ground motions with a “Recipe”, Bull. Earthq. Res. Inst. Univ. Tokyo, 

Vol. 81, 2007, p.341-352. 


