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ABSTRACT: 
 
Emerging idea of Parallel Computing makes the use of new algorithms inevitable to deal with the problem of 
structural optimization. Simultaneous analysis and design has been a well known optimization method whose 
efficiency can be increased by the use of parallel computation methods. Cellular Automata are among those 
algorithms which their models are composed of regular lattice of cell or automata. Each cell may change its 
state at discrete, fixed times (iterations) according to a local rule based on behavior of the system which should 
be modeled. So the behavior of a system can be modeled by simple interaction of cells. This study contributes to 
nonlinear dynamic analysis of multi degrees of freedom (MDF) structures by Cellular Automata. The proposed 
method establishes local update rules which act on the stories of the structures as system cells. Any of the 
stories interacts with its neighbors, while applying a ground motion record to the structure base. This leads to 
the global dynamic response of structure after some iteration. The analysis update rules tend to solve the global 
differential equation of motion by solving some local differential equations at the cell levels. An outstanding 
feature of the proposed method is that the analysis of the structure is performed by solving some simple 
equations corresponding to single degree of freedom (SDF) systems. This scheme of the method is astonishing, 
as previous studies on training artificial neural networks for optimizing dynamic behaviors of structures can be 
extended to nonlinear phase. Another aspect of Cellular Automata which makes them efficient computational 
tools is their capability to be utilized efficiently by parallel processors for modeling complex systems. 
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1. INTRODUCTION 
 
Almost all methods which exist for the solution of coupled equations of motion for an MDF system subjected to 
dynamic forces can be categorized into two classes: direct integration and the modal superposition. In direct 
integration approach, the coupled equations are integrated using a numerical method. The word direct is used to 
imply that the equations are not transformed to another form before integrating. Modal superposition, on the 
other hand, is based on the idea of transforming the coupled equations to modal coordinates, where the 
displacement vector of an MDF system can be expanded in terms of modal contributions. Although it is an 
efficient method with a reasonable computational cost, it is incapable of considering nonlinear effects. 
 
In recent decades that the size and complexity of problems in all fields of knowledge as well as structural 
analysis have been increased, production of more effective processors is inevitable. Using new developments in 
the field of semi conductors, computer industries advanced the computational capability of their processors, but 
this capability has an upper limit, and this limit is the motive for the idea of parallel computing. Today computer 
hardware engineers try to advance their processors by adding the ability of parallel processing. Massive Parallel 
Processors (MPP) are the result of the efforts in this field. Having this kind of processors, the next step is to 
develop algorithms for parallelizing the conventional methods used for solving different problems. 
 
Traditional approach for structural analysis and design utilizes finite element based numerical analysis 
programs. While this approach works well for many problems, it does not parallelize efficiently on massively 
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parallel processors (MPPs), thus limiting the size and complexity of the problems which could be analyzed. 
New approaches are therefore needed. These methods need not to be faster than the conventional methods, as 
those do not utilize all the machine resources because of their serial nature. The aim of parallel processing is to 
discretize the problem into smaller portions which can be solved simultaneously by the parallel processor. 
 
In the field of structural dynamic analysis the concept of parallel computation can best be implemented to modal 
superposition methods, as several similar computations are carried out for each independent mode of oscillation. 
The problem arises when nonlinear effects shall be considered. Direct integration, on the other hand does not 
have a potential of parallelizing. Cellular Automata paradigm, mostly used as an optimization tool in Civil 
Engineering, by its massive parallel computation capability can best be implemented for dynamic analysis of 
MDF structures. This approach, not only parallelize the conventional methods of analysis but also gives the 
optimizers an efficient medium for optimizing dynamic systems through the use of simultaneous analysis and 
design (SAND) approach, which analysis and design are combined in a single optimization problem. This is 
done by adding analysis unknowns such as displacement to design variables (Haftka 1989).Cellular Automata 
approach, unlike finite element method tries to solve the governing differential equation of a system locally 
rather than globally. The global behavior is thus modeled by local interaction of system components. Another 
interesting feature of using Cellular Automata for dynamic analysis is the possibility of training artificial neural 
networks as an alternative for exact local analysis procedure especially when nonlinear behavior is modeled. 
 
 
2. CELLUAR AUTOMATA PARADIGM 
 
The essence of Cellular Automata is the attempt to solve non-linear partial differential equations of complex 
system in an iterative localized manner. Cellular Automata tiles a problem domain into cells of equal size. Each 
cell in the lattice has the same set of simple rules that dictate how it behaves and interacts with its neighboring 
cells. The principle is that an overall global behavior can be computed by a group of cells that only know local 
conditions (Wolfarm 1994). If each cell only needs to know local conditions, then this minimizes the 
communication requirements and therefore the problem scales well on MPP (Slotta 2001). A cellular automaton 
is a discrete dynamical system. Each cell is a fixed point in a regular lattice. The state of each cell is updated at 
discrete time steps, based upon conditions in previous time steps. All the cells are updated every time step based 
on a local rule, thus the state of the entire lattice is updated every time step. In general, Cellular Automata are 
used to simulate the dynamic behavior of physical systems, and have been used successfully to represent a 
variety of phenomena such as diffusion of gaseous systems, solidification and crystal growth in solids, 
hydrodynamic flow and turbulence (Slotta 2001). 
 
 
2.1. Cellular Automata Lattice  
 
Form of the cellular space directly reflects physical dimensions of the problem being solved. Two sample lattice 
structures, representing one- and two-dimensional cellular spaces are shown in Figure 1, where cell locations are 
indicated by open circles. A three-dimensional space can be constructed by layering several of the two-
dimensional ones, spaced equally so that the distance between them is the same as the distance between the cells 
in the plane. The lattice structures, however, are not limited to the rectangular ones, shown in the figure.  
 

 
Figure1 Cellular Automata lattices 

 
Cellular Automata based on other lattice systems such as two-dimensional trigonal and hexagonal lattices are 
also possible (Abdalla 2004). Each cell of the lattice has a value or set of values which may be binary, discrete 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
or continuous depending on the behavior which is to be modeled. They are updated over the course of iterations. 
 
 
2.2. The Neighborhood 
 
One of the most important features of Cellular Automata is the neighborhood structure. For updating the value 
of a cell, its own value and the values of neighboring cells should be considered. Configuration of the 
neighborhood structure is highly problem dependent and depends on the nature of the physical phenomenon that 
should be modeled (Abdalla 2004). Some common examples of neighborhood structures are shown in Figure 2. 
The cell to be updated is labeled as C, and the adjacent ones are labeled with letters representing the East, West, 
North, and South directions. Again, these are not the only neighborhood structures. 
 

 
Figure 2 Cellular Automata neighborhood 

 
2.3. Boundaries 
 
As all cells have the same neighborhood structures, the problem arises for the cells at the boundaries of the 
system where a number of neighboring cells are out of the domain. A possible solution is to assume that border 
cells are connected to the cells on the opposite boundary as neighbors, forming a closed domain. For example, 
for a two-dimensional rectangular domain, a site on the left border has the site in the same row on the right 
border as its left neighbor. With the same update rule applied to all the cells, this yields what is called a periodic 
boundary condition which is representative of an infinite system. The type of the boundary condition to be used 
in a simulation depends on the physical application under consideration. Other types of boundary conditions 
may be modeled by using preset values of the cell for the boundary nodes or writing unique update rules for the 
cells at the boundary which provides substantial flexibility in introducing boundary conditions (Abdalla 2004). 
 
 
2.4. CA Update Rules 
 
To update the values of cells in any iteration some local update rules are which are directly dependent on the 
behavior of the system that is modeled. For example if the structural analysis of a system should be carried out, 
the rules are based on the minimization of the total potential energy at the cell level. In a computer 
implementation, the update rules that are applied to every cell of the lattice are like subroutine functions. The 
arguments for the function are the values of neighborhood sites, and the value returned by the function is the new 
value of the cell at which the function is being applied. For example, for the von Neumann neighborhood, the 
function has 5 arguments, f(C,E,W,N,S), which are the values of neighbors at iteration (t). It returns the value of 
the site C at the iteration (t+1).This is the key function of Cellular Automata which shows its inherent parallelism. 
As each cell has its own update rules which depends only on the values of its neighbors. It is conceivable that by 
assigning a simple processor to every so many cells of a large system of cells, one can increase the detail or the 
size of the system without increasing the time it takes to update the entire system. Thus, Cellular Automata 
simulations are highly suited for massively parallel computers. Although the update rules are usually the same for 
all cells in a domain, this is not always the case. Different analysis rules can be used in different parts of the 
domain. This is the case in SAND approach where usually there are analysis and design update rules. 
 
 
3. APPLICATIONS OF CELLULAR AUTOMATA IN CIVIL ENGINEERING 
 
Despite being introduced in the late 1940s, Cellular Automata paradigm is a newcomer in civil engineering and 
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this study is its second application in the field of dynamic analysis. The authors previously utilized it for linear 
dynamic analysis of structures (Salajegheh 2007). Biondini et al. carried out the durability analysis of concrete 
structures using Cellular Automata approach (Biondini 2004). Kicinger et al. represented Cellular Automata in 
topological structural design (Kicinger 2004). In the field of structural analysis Gurdal & Tatting introduced 
novel applications of Cellular Automata (Gurdal and Tatting 2000). Considering its evolutionary nature, they 
utilized it for simultaneous analysis and design of structures which is an effective tool for optimization. In 
combining analysis and design, Cellular Automata usually use fully stressed methodology in design phase which 
is incapable of considering optimization constraints. Salajegheh et al. optimized double layer space structures 
with the SAND approach by locally combining Cellular Automata and genetic algorithms (Salajegheh 2007). 
 
 
4. PROBLEM DEFINITION 
 
The aim of this study is to perform nonlinear dynamic analysis of MDF structures against seismic excitation, by 
means of Cellular Automata paradigm. Minimization of the total potential energy in a system leads to 
equilibrium equations. If this has been done globally, the finite element formulation of the structure is acquired. 
In Cellular Automata approach energy minimization and the derivation of equilibrium equations should be 
performed locally. Global equilibrium of the structure is then guaranteed by interactions between the local 
equilibrium equations. This is an iteration based method in which the structure gradually seeks its stable state. 
 
Although dynamic analysis by Cellular Automata is not restricted to MDF shear structures, regarding its 
simplicity for acquiring equilibrium equation at cell level, a typical MDF structure with rigid beams is chosen. A 
1-D cellular lattice is considered in which each floor in the structure represents a cell with two neighbors (upper 
and lower stories) (Figure 3). Each cell has its own specification such as the story mass, displacements, stiffness 
and damping of neighboring stories and itself. Therefore the state of a cell at the nth iteration can be implied as: 
 

 ( ) ( ){ }11 ,,,,, ++= iiiiiin cckkUmS  (4.1)
 
Where im , iU , ik  and ic  are mass, displacement, stiffness, and damping coefficients of the ith story and 

nS is the state of a cell at the nth iteration. Knowing the state of all cells in the nth time segment, some update 
rules should be derived using local equilibrium of cells to obtain the n+1th segment condition. 
 

 
Figure 3 Configuration of Cellular Automata 

 
4.1. Analysis Update Rule 
 
Although there is no restriction on how damping is introduced to the model, for the consistency of the update 
rule and the numerical example (Chopra, 2005), which utilizes Rayleigh damping, Mass and stiffness 
proportional damping (Figure 4) are used. 
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Figure 4 (a) Mass-proportional damping; (b) stiffness proportional damping 

 
Free body diagram of a cell under the applied load from its neighbors is shown in Figure 5. The equation of 
motion is gained using D'Alembert's principle of dynamic equilibrium. 
 

 ( ) ( ) ( ) ( ) 0011111111 =+−−−−−+−+ ++++−− iiiiiiiiiiiiiiii umaUUkaUUkUUkaUUkUm &&&&&&&  (4.1.1)
 
The displacement relative to the base is implied by: 
 

 sii uuU +=  (4.1.2)
 
Where iu  and su  are relative displacement of ith story to the ground and base displacement respectively. 
 

 
Figure 5 Free body diagram of a cell 

 
Thus Eqn. 4.1.1 takes the form: 
 

 ( ) ( ) ( ) ( ) siiiiiiiiiiiiiiiii umumauukauukuukauukum &&&&&&&&& −=+−−−−−+−+ ++++−− 011111111  (4.1.3)
 
Rewriting Eqn. 4.1.3, differential equation of motion for a cell takes the form: 
 

 ( ) ( ) ( ) 1111111110 −−++++ ++−+−+−=+++ iiiiiiiiiisiiiiiiii ukaukuukauukumukukamaum &&&&&&&& (4.1.4)
 
This is the equation of motion for an SDF system which is subjected to a force defined by the right side of Eqn. 
4.1.4, called the pseudo force, P(t). Eqn. 4.1.4 has been used for dynamic analysis of linear systems (Salajegheh, 
2007), but it’s obvious that when nonlinear behavior is to be modeled it is of no use because in such a case, the 
last two terms on the right side of equation increase without bound, when columns of thi story are yielded. In 
this study a change of variable is suggested as follows: 
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 1−−=′ iii uuu  (4.1.5)
 
For each cell it can be assumed that the displacement of the story relative to its bottom story ( iu′ ) is to be 
calculated. In other word ground level is transformed to the bottom level of cell and the acceleration of ground 
and the thi 1− story is algebraically summed. By this assumption the last two terms of Eqn. 4.1.4 are omitted and 
it takes the following form: 
 

 ( ) ( ) ( ) ( )iiiiiiisiiiiiiii uukauukuumukukamaum ′−′+′−′++−=′+′++′ ++++− &&&&&&&&& 11111110  (4.1.6)
 

 ( ) ( ) 11111111)( −−++++ ++−+−+−= iiiiiiiiiisi ukaukuukauukumtP &&&&&  (4.1.7)
 
Now the pseudo-force can be calculated easily, even in case of yielding if the elastoplastic relation between 
displacement and story shear is known. Considering the state of each cell at any iteration, P(t) is known and the 
differential equation of SDF system can be solved by standard methods of structural dynamics. By 
calculating iu′ , iu  is easily estimated by Eqn. 4.1.5. This is an iterative procedure. For any iu  calculated in an 
iteration a new value for P(t) is derived. The process goes on until the convergence criteria would be satisfied. 
 
 
4.2. Analysis Update Approach 
 
Different approaches could be used in applying analysis updates rules to the cells for estimating the response of 
a structure against seismic excitation. One may seek total equilibrium at each time segment of ground motion 
record and then goes to other segments. This means that Cellular Automata iterations are performed at first 
segment of the record until the convergence criteria are met and then other time segments are considered. The 
other method is to seek equilibrium of all cells simultaneously all trough the record. In this way a cell 
displacements in all time segments, regarding neighboring cells information are calculated. Iterations go on until 
the steady state of all cells gained simultaneously. Although the second method is more time consuming but it 
has the advantage of proper parallelization and also useful in training artificial neural networks which are of 
great interest in the field of structural optimization.  
 
 
5. NUMERICAL EXAMPLE 
 
To illustrate accuracy of the proposed method a simple example is considered (Chopra, 2005). It is a five story 
building (Figure 6.a) idealized as a shear frame with elastoplastic relation between the shear force and story drift 
(Figure 6.d). The structure is subjected to El Centro ground motion. The average acceleration method is used to 
determine response equation 4.1.6 for each cell. Story stiffness and yield strengths which are normalized relative 
to the total weight of the structure are shown in Figure 6.b and Figure 6.c respectively. 
 

 
Figure 6 (a) system properties, (b)story stiffnesses, (c)story yield strengths, (d)elastoplastic relation between story shear 

and story drift 
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Response result, which is the displacement of top floor for the first 15 seconds of El Centro ground motion, 
gained by Cellular Automata methodology is presented in Figure 7. Corresponding result of the reference 
example (Chopra, 2005) is shown in Figure 8. 
 

 
Figure 7 Calculated response by Cellular Automata methodology 

 

 
Figure 8 Actual response result  

 
The displacement trace of building roof is in good compliance with actual results of the example. This is also 
true for the maximum displacement of roof which is estimated to be 0.082 m (3.22 in.) by CA method. The 
slight differences in results are due to the sensitivity of nonlinear analysis to parameters such as overshooting 
tolerance etc. The relation between story shear V5 and story drift 5Δ , calculated by the proposed method in this 
study is shown in Figure 9.   
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Figure 9 Story shear vs. drift for the fifth story  

 
6. CONCLUSIONS 
 
Dynamic analysis of MDF structures needs the solution of a set of coupled differential equation which should be 
solved simultaneously. This is impractical when degrees of freedom increase. Methods exist for the decoupling 
of these equations like modal superposition. Cellular Automata paradigm is in fact a numerical approach to 
solve sets of equations simultaneously. Previous studies have shown the efficiency of the method in structural 
analysis for static load cases where solving sets of equations derived from local analysis of cells was equivalent 
to the global solution of the structure finite element formulation. 
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This study shows the capability of Cellular Automata in estimating dynamic demands of structures especially 
when nonlinear behavior is to be modeled. Regardless of the type of structure, local formulation of the equation 
of motion leads to a set of differential equations representing the motion of SDF systems under dynamic loading. 
This is the interesting feature of Cellular Automata applications, because unlike the modal superposition, SDF 
systems derived from decoupling the set of coupled equations, should not be considered only in the elastic range. 
The fact that MDF structures can be analyzed through a set of SDF models is useful not only in the field of 
parallel computing, but also in optimization. Dynamic analysis has always been the challenge of optimizers, as 
it’s a time consuming, costly procedure. Approximation of dynamic responses is a common practice in 
optimization methodology. Artificial neural networks are suitable for this purpose. If neural networks could be 
trained for the estimation of SDF structures response, Cellular Automata can easily be used to approximate the 
global behavior of a system under dynamic loading. Training neural networks for dynamic analysis of SDF 
systems have been carried out previously by Salajegheh et al. (Salajegheh 2004). The trained network was 
combined with modal superposition analysis to estimate dynamic response of elastic structures. With the use of 
the methodology presented in this study the future goal is to train neural networks which are capable of 
considering nonlinear responses.  
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