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ABSTRACT: 
Adjacent buildings are subjected to pounding hazard during earthquakes when there are inadequate separation 
distances. Pounding phenomena have been observed during past major earthquakes, including recent M8.0 
Wenchuan Earthquake on May 12, 2008, and have been identified as one of the main causes of structural 
damages of buildings. However, most of actual poundings are likely to be eccentric due to asymmetric structural 
plans or non-constant gaps between adjacent buildings. Seismic torsional pounding is a highly nonlinear 
phenomenon in nature. In this study, the nonlinear Hertz contact law was adopted to simulate impacts between 
two single-story asymmetric towers. The numerical simulation results show that torsional pounding tends to be 
much more complex than translational pounding, and most of torsional impacts are chaotic. Group periodic 
pounding (i.e. a group of non-periodic impacts repeating themselves periodically) observed in shaking table 
tests by Chau et al. (2003) was replicated numerically for the first time by incorporating torsional responses, 
which cannot be explained in numerical simulations for translational pounding alone.  
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1. INTRODUCTION 
 
Seismic pounding (i.e. earthquake induced collisions between adjacent structures) has been frequently observed 
in past strong earthquakes, for example, in the 1964 Alaska earthquake (Anagnostopoulos 1994), the 1968 
Tokachi-Oki earthquake (Wakabayashi 1986), the 1976 Tangshan earthquake (Liu et al. 1993), the 1985 Mexico 
City earthquake (Rosenblueth and Meli 1986), the 1989 Loma Prieta earthquake (Kasai and Maison, 1997), and 
the 1999 Chi-Chi earthquake (Naeim et al. 2000). Figure 1 shows two examples of pounding induced damages 
in the recent massive M8.0 Wenchuan earthquake on May 12, 2008. During the 1989 Loma Prieta earthquake, 
there were over 200 pounding occurrences involving more than 500 buildings in San Francisco, Oakland, Santa 
Cruz, and Watsonville (Kasai and Maison, 1997). 
 
A large number of studies have been conducted on modeling seismic pounding between adjacent structures (e.g. 
Miller 1980; Anagnostopoulos 1988; Jing and Young 1991; Davis 1992; Chau and Wei 2001; Jankowski 2005; 
Muthukumar and DesRoches 2006). Among them, the pounding models which utilize the nonlinear Hertz 
contact law (Davis 1992; Chau and Wei 2001; Muthukumar and DesRoches 2006) appear to be more realistic, 
since structural poundings during earthquakes are seldom linear. However, most of these studies assume a 
two-dimensional behavior, i.e. only translational pounding is considered. Actually as argued by Leibovich et al. 
(1996), torsional pounding tends to be more common than unidirectional pounding during real earthquakes, 
which may be resulted from rotational responses of asymmetric buildings or nonparallel gaps between adjacent 
structures. For torsional pounding, Leibovich et al. (1996) studied possible eccentric pounding between two 
symmetric single-story structures; Papadrakakis et al. (1996) developed a three-dimensional finite element 
model to simulate pounding between adjacent buildings using the Lagrange multiplier method; Mouzakis and 
Papadrakakis (2004) investigated the three-dimensional pounding between two adjacent buildings based on the 
impulse-momentum relation; Gong and Hao (2005) studied the torsional pounding between an asymmetric and 
a symmetric one-storey system subjected to bi-directional ground motion. 
 

 1

mailto:wlxustc@hotmail.com
mailto:cektchau@polyu.edu.hk


The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 
Figure 1 Damages caused by pounding during the M8.0 Wenchuan earthquake on May 12, 2008 

 
However, little research has been conducted to adopt the more realistic Hertz contact law to model torsional 
pounding between asymmetric structures. This paper will extend the models of Davis (1992) and Chau and Wei 
(2001) to consider the torsional pounding between two adjacent asymmetrical single-story structures using the 
nonlinear Hertz contact law. The resulting differential equations will be numerically solved using the 
fourth-order Runge-Kutta method with error control. The effects of various input parameters on torsional 
pounding will be investigated through numerical simulations. 
 
 
2. FORMULATION AND NUMERICAL SOLVING 
 
2.1 Equations of Motions 
 
As shown in Figure 2, two rectangular single-story towers (Tower A and Tower B) of equal height and separated 
by a distance of a′ are considered in this study. Each tower is supported by four identical square columns at its 
four corners. For simplicity, the dimensions of the two towers are assumed to be equal (i.e. A Bl l l′ ′ ′= =  and 

). Since the four supporting columns are identical and symmetrically distributed, the center of 
stiffness (denoted by ‘CS’ in the figure) coincides with the geometric center of each tower. The position of the 
center of mass (denoted by ‘CM’ in the figure) is assumed to be a variable. The eccentricities between CM and 
CS are denoted by   along the x and y directions respectively. Without loss of generality, only 
eccentricity along the y direction and ground motion along the x direction are considered in the present study (i.e. 

). In addition, the tower slabs are assumed to be rigid in their own planes and frictionless contact 
is assumed. The present formulation provides the simplest analytical model incorporating seismic torsional 
poundings, we believe this study should provide valuable insights into this unknown complex phenomenon. 

A Bw w′ ′= = w

),ix iye e′ ′ ( ,i A B=

0Ax Bxe e′ ′= =

 
The motion of each tower is described by three degrees of freedom, that is, two translational displacements 
along the x and y directions, ( )iu τ  and ( )iv τ , and one rotation about CM, ( )iθ τ  ( ), where ,i A B= τ  is 
the time. The equations of motions of each tower can be written in a matrix form as: 
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where  is the lumped mass, im iI ′  is the moment of inertia of each tower about a vertical axis through its 
center of mass,  and  denote the translational and torsional damping respectively,  and ic ic′ ixF ′ iyF ′  are the 

pounding forces acting on each tower along the x and y directions respectively, iTθ′  is the torqure caused by 
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pounding, and ( ) sing gu Aτ ωτ=  is the ground motion, where gA  and ω  are the amplitude and the circular 
frequency respectively. The matrix  is the stiffness matrix of each tower. For the model shown in Figure 1, it 
has the following form: 

K i
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where  is the lateral stiffness of each supporting column of the iik th tower. For simplicity, all of the columns of 
the two towers are assumed to be identical (i.e. A Bk k k= = ). Thus, if we define KA and KB are the lateral 
stiffness of the two towers, we have 4A BK K= = k ). The other two parameters in Eqn. 2.1 have 

the forms of 
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Figure 2 Sketch of two asymmetric rectangular towers separated by a distance  a′

 
If we normalize the dimensions with the excitation amplitude (

gA ) as /i i gx u A= ,  /i i gy v A= ),( BAi =  and 

normalize the time with the translational natural frequency ( Axω ) of Tower A as Axt τω= , Eqn. 2.1 can be 
written in a dimensionless form for Tower A and Tower B as: 
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where ,/ix ix ge e A′= /iy iy ge e A′= , /i i gA′Δ = Δ , 2/i i gI I A′= , / ga a A′= , ,/ gl l A′= / gw w A′= ,

1 / /Ax Axp T T ω ω= = , 2 / /Bx Bxp T T ω ω= = , 3 / /A Ap T T θ θω ω= = , 4 / /B Bp T T θ θ= ω ω= T,  is the period of 
the ground motion ( i.e. 2 /T π ω= ), , 2 4 /ix ik mω = 2 2 2 2 2[ 4( )] / ii i i ix iyl w e e k Iθω ′ ′ ′ ′= + + + /(2 )ix i i ixc m′ , ζ ω= , 

/(2 )i i i ixc Iθζ ω′ ′=  , and ),( BAi = /A Bm m m=  is the mass ratio between the two towers. Since the two towers 
are assumed to have identical lateral stiffness (i.e. 4A BK K k= = ), recalling , we have 

. The impact forces have been normalized as 

2 /ix i iK mω =
2

2 1( / ) ( / )Bx Axm ω ω= = 2p p /( )ix ix g AxF F A k′=  and /( )iy iy g AxF F A k′= , 
and the impact torques have been normalized as /( / )i i Ax i iT T k I mθ θ′=  ),( BAi = . 
 
 
2.2 Impact Forces 
 
Following the models of Davis (1992) and Chau and Wei (2001), the pounding force is modeled utilizing the 
Hertz contact law as: 
 

0
0 0

d for
F

for d

χβ⎧ d⋅ >
= ⎨

≤⎩
                              (2.5) 

 
where  is the normalized penetration depth at the pounding point, d / gd d A′= , β  is the normalized impact 

stiffness parameter, 1/( )Ax gk A χβ β −′= , which is a function of the elastic properties and geometry of the two 
contact bodies (Goldsmith 1960), and χ  is the contact force exponent, with χ = 1.5 corresponding to the 
Hertz contact law, and χ = 1 representing linear contact.  
 
Note that for torsional pounding, impacts do not necessarily occur between neighboring corners of the two 
towers. In our calculations, the relative locations of the two towers are checked at every time step to determine 
whether pounding occurs or not. Once any pounding occurs, the locations of the impact and consequently the 
penetration depth  are determined. Then the impact forces and torques on each tower are calculated. To be 
more complex than translational pounding, there are totally thirteen different cases of torsional pounding 
between the two towers. The details will not be given here and can be referred in Wang (2008). 

d

 
 
2.3 Method of Solution 
 
After the impact forces and torques are determined, the torsional pounding between the two towers can be 
solved through Eqns. 2.3 and 2.4, which comprise of six coupled second-order differential equations. Numerical 
integration is used here to solve the system of differential equations. First we define the following vector: 
 

{ }y A A A A A A B B B B B Bx x y y x x y yθ θ θ θ ′=

y)

                     (2.6) 

 
where the symbol  means transpose of vector. Then Eqns. 2.3 and 2.4 are rewritten as a set of 12 first-order 
differential equations as 

′
( ,y f t= , with a initial value of 0( )y t 0y=  representing the initial displacements 

and velocities of the two towers. Finally this set of differential equations is numerically solved using the 
fourth-order Runge-Kutta method with an adaptive step size control (Press et al. 1992). The allowable error in 
the iterations was set to 0.1%. The initial time step was set by the program automatically, typically in the order 
of 0.01, but this change with the current values of the first derivatives of the displacement variables. 
 
To search for continuous impacts (i.e. non-transient impacts), the approach used by Davis (1992) and Chau and 
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Wei (2001) is adopted here. In particular, the numerical integrations are first performed for 40 excitation cycles 
and all impacts occurred in the next 8 cycles are reported. Through extensive numerical simulations, we found 
this approach also appears to be reasonable for our problem of torsional pounding. 
 

 
Figure 3 Validation of the solving method by comparing the steady pounding phase diagrams when the Tower A 

has opposite eccentricities: (a) eAy/l = +0.1; (b) eAy/l) =−0.1. Other parameters are eBy/l=0, / AxT T =0.7, 
1.5, /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0. 

 
 
2.4 Validation of Solving Method 
 
The solving method was validated before torsional pounding phenomena are discussed. For translation 
pounding, the results given by the present method have been compared with the results published by Davis 
(1992) and Chau and Wei (2001), and they gave nearly the same results. For torsional pounding, the method was 
further validated through the following way: setting the normalized eccentricity of Tower A (eAy/l) to be +0.1 
and −0.1 respectively while keeping the other parameters all the same (eBy/l=0, 0.7,  / AxT T = /Ax BxT T = 1.5, 
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Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03 and a = 1.0), and comparing the resulting steady pounding phase diagrams. 
As shown in Figure 3, when the eccentricity of Tower A is changed from +0.1 and −0.1, the translational phase 
diagrams at the CMs of the two towers remain unchanged whereas the rotation phase diagrams change to be 
opposite. The results are considered to be reasonable, suggesting the method used in this study is valid. 
 
 
3. RESULTS AND DISCUSSIONS 
 
A large number of numerical simulations have been carried out to investigate the effects of various parameters, 
such as the excitation frequency, damping ratio, separation distance and eccentricity, on torsional pounding. But 
due to space limitation, only a minor part of the results will be discussed here. The details can be referred in 
Wang (2008). 
 
 
3.1 Chaotic Impacts 
 
Figure 4 plots the normalized relative impact velocity /( )g AxV A ω  versus the normalized excitation period 

 for 1.5, / AxT T /Ax BxT T = Ax Bxζ ζ= = 0.03, A Bθ θζ ζ= =0.03, w/l=0.55 and a=1.0. In the figure, Tower A is set 
to be asymmetric (i.e. eAy/l=0.1) and Tower B to be symmetric (i.e. eBy/l=0.0). The contact force exponent is set 
as χ = 3/2 representing Hertz contact, and the impact stiffness is set as β = 1000 representing a relatively stiff 
contact (Davis, 1992). Recalling /A Bm m m=  and 2 2( / ) ( / )Bx Ax Ax Bxm Tω ω= = T , we get /A Bm m = 2.25, 
which means Tower A is more massive than Tower B. Each cross in the figure represents an impact. The impact 
velocity spectrum for translational pounding when eAy/l=0.0 [i.e. Figure 5 in Chau and Wei (2001)] is also 
plotted by dots for comparison.  
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Figure 4 Comparison of relative impact velocity spectra versus  for torsional (e/ AxT T Ay/l = 0.1, denoted by 

crosses) and translation (eAy/l = 0.0, denoted by dots) poundings 
 
It is seen that the impact velocity spectra for translational and torsional poundings have similar shapes. But 
major differences still exist. For translational pounding, chaotic impacts only occur at limited excitation periods 
and most of the impacts are periodic. But for torsional pounding, most of the impacts are chaotic. For these 
chaotic impacts, the recorded impact velocities within eight excitation cycles appear to be quite scattered. In 
addition, the maximum impact velocity of torsional pounding is almost three times of that of translational 
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pounding. All of these suggest that torsional pounding is more complex and severer than translational pounding. 
 
 
3.2 Group Periodic Impacts 
 
The other difference is that group periodic impacts were observed for the first time for the case of torsional 
pounding (e.g. =0.68-0.77, 0.87, 0.93-0.95 and 1.3-1.39 in Figure 4) but not in translational pounding. 
The group periodic impacts mean a group of non-periodic impacts repeating themselves periodically, and are a 
unique pounding phenomenon first observed in shaking table tests by Chau et al. (2003). An example of group 
periodic impacts has been shown in Figure 3(a) when =0.70. For this case, there are three impacts within 
one excitation cycle, occurring at the Corners C, F and C in sequential order. The location of each impact 
(labeled as ①-③) in the phase diagrams is indicated. These three impacts are clearly shown by the sudden 
jumps in both translational and rotational velocities in these phase diagrams.  

/ AxT T

/ AxT T

 
 
3.3 Effect of Eccentricity 
 
To investigate the effect of eccentricity, Figure 5 compares the relative impact velocity spectrum for eAy/l = 0.2 
to that of Figure 4 for eAy/l = 0.1. It is evident that the shape of relative impact velocity spectrum remains almost 
unchanged, while the maximum velocity drops about 20%. But at some excitation periods (such as those periods 
near AT θ  and BxT  ), the maximum impact velocities increase with the value of eccentricity. But, as a whole, 
the impact velocity spectrum does not change significantly by the doubling of eccentricity.   
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Figure 5 Comparison of relative impact velocity spectra for eAy/l = 0.1 and 0.2 

 
 
4. CONCLUSIONS 
 
In this paper, the torsional pounding between two asymmetric single-story towers was modeled using the 
nonlinear Hertz contact law. Numerical simulation results show that generally torsional impacts tend to be much 
more complex than translational pounding, and most of them are either chaotic or group periodic. Chaotic 
impacts may result in quite scattered impact velocities, and thus make the torsional pounding even more 
unpredictable. The group periodic pounding observed in shaking table tests by Chau et al. (2003) was simulated 
and replicated numerically for the first time by incorporating torsional responses, which cannot be explained 
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through numerical simulations for translational poundings alone. The impact velocity spectrum is not affected 
significantly by the doubling of eccentricity. Although the present model is highly idealized comparing to actual 
asymmetric multi-story structures, we believe that the present results can capture the essence of nonlinear 
seismic torsional pounding phenomenon with the minimum number of parameters involved. The results of this 
study should provide valuable insights into this unknown domain of seismic torsional pounding. 
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