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ABSTRACT : 

Nowadays, events like severe earthquakes or man-made malicious actions are often taken into account in 
structural design of critical infrastructures and consequently high dynamic loads are considered in structural
analyses. In particular, it is aimed to reproduce large displacements fields, dynamic fracture mechanisms
(fragmentations, etc.) and high stress concentrations. Classical numerical methods, like Finite Element Method
(FEM), may be inadequate to model the mechanical behavior of structural elements under such actions. In fact,
high deformation gradients and unforeseeable failure mechanisms can represent critical aspects for FEM 
methods. As a consequence, several meshless methods, originally developed for fluid-dynamics, have been 
recently investigated in order to adapt them to solid continuum mechanics.  
Smoothed Particle Hydrodynamcs (SPH) method, belonging to meshless methods, is here described. Classical
numerical formulations are presented and the basic idea of the SPH approach is described. Then, the attention is 
focused on the expressions used to approximate derivatives, since these formulations play a fundamental role in 
developing numerical framework to reproduce dynamic problems. Deficiencies and criticalities related to such 
a point are described and the most common improvements proposed in literature are summarized. Then, an
original approach is presented, based on a direct control of the convergence error. Performances of the proposed 
expressions are outlined via numerical tests. In particular second order of convergence in treating second 
derivatives is outlined and numerical spectra are derived and described, comparing results from the proposed 
formulation with those from other SPH methods and from linear FEM.  

KEYWORDS: Severe dynamic conditions, Numerical methods, Meshless methods, Smoothed 
Particle Hydrodynamics 
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1. INTRODUCTION  
 
In computational mechanics an intense research activity is constantly conducted aiming to propose and improve
numerical methods and procedures, to simulate particular mechanics conditions, such as high dynamic loading 
conditions, large displacements or rapid deformations. Indeed, these conditions can represent severe criticalities
for classical numerical methods, such as Finite Element Methods (FEM) or Boundary Element Methods 
(BEM). Mesh distortion and stress concentration, in particular, represent two of the main issues that researchers
try to overcome, introducing new numerical procedures. In case of seismic engineering, particularly complex
analyses, especially for severe seismic excitations, can be subjected to such undesirable lacks of accuracy and 
consequently can need to be conducted via particular numerical procedures. Some of the most interesting 
numerical methods for severe dynamic conditions are the so-called meshless methods. This expression indicates 
a number of numerical methods that, using different approaches, do not need a mesh discretization of the
continuum, as intended in the classical FEM approach. Alternatively, a number of points are defined, where all
the variables and equations are evaluated. In this way, points, classically referred to as “particles”, can be 
considered as degrees of freedom, whose displacements do not introduce any mesh distortion and consequently 
numerical instabilities are avoided. On the contrary, meshless methods often suffer of lack of accuracy close to
the boundary, which leads to the necessity of particular procedures, trying to enforce convergence of numerical
solutions in every point of the domain.   
 
 
2. SMOOTHED PARTICLE HYDRODYNAMICS METHOD  
 
SPH (Smoothed Particle Hydrodynamics) method was first introduced by Lucy (1977) and Gingold and 
Monaghan (1977) to address astrophysics problems. Then the method was used in a number of applications,
mainly in fluid-dynamics (Monaghan 1992); then it was successful introduced in mechanics and structural
dynamics (Benz and Asphaug, 1995, Belytschko et al. 1996).  
SPH acronym is commonly attributed in literature to a group of meshless methods, sharing the same basic approach. 
Indeed, in all SPH procedures, aiming to approximate a function A(x), the following holding expression is 
considered: 

                                   
( ) ( ) ( )i i

D
A x A x x dδ= Ω∫  (2.1) 

 
where di(x) is the Dirac function and D is the domain of A(x); hence, a first approximation is introduced, 
through the following expression: 

                                    
( ) ( ) ( )i i

D
A x A x W x d≅ Ω∫  (2.2)  

   
where Wi(x), called kernel function, is substituted to approximate the Dirac function. Common kernel functions 
are Gaussian-like functions, as that depicted in Figure 1, whose expressions can be exactly that of Gaussian 
functions or also polynomial functions.  
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Figure 1 Kernel function 

 
In order to correctly reproduce the Dirac and in order to guarantee the convergence of the approximation
method, the following properties are commonly requested to kernel functions: 
 

• Positive in its domain; 
• Unitary area within its domain; 
• more times derivable, with continuous derivatives; 
• defined in a compact support. 

 
Hence, a second approximation is introduced, substituting equation 2.2 with its discrete expression:  

                                               
1

( ) ( ) ( )
N

i j i j j
j

A x A x W x
=

≅ ΔΩ∑  (2.3) 

 
where a partition of D has been introduced through a finite number N of spaces jΔΩ , whose centroids are the 
so called “particles”: 

                                                       
1

N

j
j

D
=

ΔΩ =∪  (2.4) 

 
3. APPROXIMATION OF DERIVATIVES  
 
In order to obtain an approximated expression of derivatives of function A(x), a number of approaches has been 
developed and proposed. Classical one, applying Green formula and neglecting border contributions, expresses 
the first derivative of A(x) as: 
                                    ( ) ( ) ( ) ( )i i i

D
A x A x A x W x d∇ ≅ − ∇ Ω⎡ ⎤⎣ ⎦∫                    (3.1)         

  
and in the discrete form: 

                                   
1

( ) ( ) ( ) ( )
N

i i j i j j
j

A x A x A x W x
=

⎡ ⎤∇ ≅ − ∇ ΔΩ⎣ ⎦∑  (3.2)  
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Further derivatives, according to classical approach, are then evaluated reiterating the procedure: 

                                   2

1

( ) ( ) ( ) ( )
N

i i j i j j
j

A x A x A x W x
=

⎡ ⎤∇ ≅ ∇ −∇ ∇ ΔΩ⎣ ⎦∑  (3.3) 

In order to overcome lack of convergence, in particular occurring close to boundaries, different procedures have 
been proposed in literature. Starting from Taylor series expansion, Chen and Beraun (2000), proposed a 
generalized formulation leading to the following expressions for first and second derivatives: 

                                ( )
( ) ( )
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( )

( )
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j i i j j
j
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j i i j j
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A x A x W x

A x
x x W x
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=
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∑

∑
 (3.4) 
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 (3.5) 

 
Such a procedure, deriving from Taylor series expansion up to the first order, guarantees everywhere in the 
domain, even close to the boundary, a h order of convergence to the exact solution, where h represents the size 
of the particle discretization. In this case, no specific constraints are introduced for the kernel function. On the
contrary, different approaches, also focusing on Taylor series expansion, aiming to manage the convergence 
error, indicate particular expressions for kernel functions. It is the case of Reproducing Kernel Particle Method
(RKPM) from Liu and coworkers (1995) and Kulasegaram and Bonet (2000), where, forcing to zero n-th order 
momenti of kernel function, it is aimed to achieve higher order errors. However, boundary deficiencies in these 
cases are not completely eliminated and particular local procedures become necessary. 
To overcome such problems and obtain a second order error in approximation of derivatives, authors are
currently working on an original formulation, which starts from a basic idea of Liu et al. (2005) and Zhang and 
Batra (2004). In this procedure Taylor series expansion up to the second order is projected against a kernel
function an its derivative, obtaining the following linear system, providing the first and the second derivatives
of the function A(x):  

                         
( )
( )

( ) ( ) ( )

( ) ( ) ( )
11 12

2
21 22

i i
i D

i i i
D

A x A x W x dx
A xB B

B B A x A x A x W x dx

⎛ ⎞⎡ ⎤−⎣ ⎦⎜ ⎟⎛ ⎞∇⎛ ⎞ ⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟ ⎜ ⎟∇⎝ ⎠ ⎡ ⎤− ∇⎝ ⎠ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫

∫  (3.6) 

where 
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 (3.7) 

Hence, properly choosing kernel function, enforcing for each particle that specific momenti of the kernel 
function and of its derivative are null, the error is moved to h2 order, even for particles close to the boundary. 
In order to appreciate the enhancement introduced with this formulation, the method was used to solve in one 
dimension the following problem: 
                                                      u f′′ = −                           (3.8) 

defined in the domain D [0;1], where u is un unknown function and f is equal to: 
                                           sin( )f xπ=                           (3.9) 
  
Imposing Dirichlet and Neumann boundary conditions, Figure 2 is obtained; it depicts the relationship between 
the error of infinity norm, evaluated as the maximum distance between the numerical and the exact solution, 
and the particle number discretizing the domain. 
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Figure 2 Error Linf vs. particle number 

 
It can be observed that, as it was expected, in both cases the numerical solution converges to the exact one with 
h2 velocity.  
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4. NUMERICAL SPECTRA  
 
In order to appreciate the capability of the investigated methods in reproducing high dynamic problems, it is
useful to evaluate how higher vibration modes of a dynamic system are reproduced through the numerical 
approximations. A uniaxial elastic element is considered, of length L, longitudinal elastic stiffness EA, and 
longitudinal density rL. Dirichlet boundary conditions are applied. The governing equation is  

                                       
2 2

2 2 0A L
x xE

X t
ρ∂ ∂

+ =
∂ ∂

                    (4.1) 

 
where X and x are the initial and the actual configuration of the element, respectively. Introducing the celerity c
as 

                                                       A

L

E
c

ρ
=  (4.2) 

 
equation (4.1) becomes  

                                                       
2 2

2
2 2 0x xc

X t
∂ ∂

+ =
∂ ∂

 (4.3) 

 
In a stationary problem the following equation holds: 

                                                       
2

2
2
x x

t
ω∂

=
∂

 (4.4) 

 
where ω is the frequency of vibration of the element; hence, equation (4.3) can be rewritten as: 

                                                       
2

2 2
2 0xc x

X
ω∂

+ =
∂

 (4.5) 

 
The solution of this differential equation is given by: 
                                               sin( )x xα=  (4.6) 

where  

                                                       
2

2
2c

ωα =  (4.7) 

 
Thus, imposing boundary conditions 

                                                       n
L
πα =  (4.8) 

 
where n is a natural number. Substituting this expression in equation (4.7) it yields 

                                                       n
c L
ω π
=  (4.9) 
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Introducing computational methods, second derivative of actual position x with respect to the initial 
configuration X, can be expressed as a linear function of the actual position: 

                                                       
2

2
x kx

X
∂

=
∂

 (4.10) 

 
where k is a matrix of coefficients depending on the numerical method. Substituting this expression into
equation (4.4) it yields: 

                                                       
2

2 0kx x
c
ω

+ =  (4.11) 

 
Hence, eigenvalues of k matrix represent the terms 

2 2/ cω , evaluated through the numerical approach. Then, 
the ratio between the numerically evaluated vibration frequencies ω and the respective exact analytical values 
can be computed to obtain a spectrum of the numerical error in the evaluation of vibration frequencies, for each
vibration mode.  
Figure 3 depicts the obtained numerical spectra for some of the investigated methods, including two variants of
the proposed formulation. Furthermore, in order to perform a comparison, also the spectrum of the FEM with
linear shape functions is plotted.  
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Figure 3 Numerical spectra 

 
The proposed curves report the ratio between the numerically evaluated vibration frequencies and the 
corresponding exact values, for each of the vibration modes. It can be observed that classical formulations of
the SPH method present a lack of accuracy in reproducing higher modes, since the spectra values are quite 
lower than unity. On the contrary spectra of the proposed formulation, presented in two variants depending on
the choice of the kernel functions, are much closer to unity, appearing competitive with performance exhibited 
by classical linear FEM.   
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5. CONCLUSIONS  
 
High dynamic problems represent a critical aspect of structural dynamics, which is currently attracting the
efforts of many researchers of numerical community. In this field, meshless methods seem to be able to 
overcome the problems related to mesh distortions and numerical instabilities, which affect classical FEM, if 
employed under particular loading conditions.  
The paper presented the basic idea of SPH method and summarized its basic formulations; in particular, the 
attention is focused on derivatives expressions, which play a fundamental role in deriving numerical framework
to simulate dynamic structural systems. In this case, given the lack of accuracy occurring close to the boundary,
different improvements have been proposed in literature and some of them are here cited. Then, the derivation 
of an original formulation due to authors is described. The approach here proposed appears to exhibit good 
results both in the direct approximation of derivatives, tested via a numerical problem, and in the derivation of
the numerical spectrum. In particular, this last test reveals that existing SPH formulations lose completely 
accuracy in predicting higher vibration frequencies. On the contrary, the proposed formulation, presented in 
two variants, is able to better reproduce higher modes (especially in case of the second formulation), providing
results comparable with those of FEM in case of linear shape functions, without the classical deficiencies 
characterizing FEM method in high dynamic analyses. Authors are currently working on differences between 
proposed formulations and other existing SPH procedures in order to investigate the numerical spectra,
conducting further numerical tests, and extending the formulations to multidimensional cases.   
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