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ABSTRACT : 

The main advantage of the fuzzy controller for structural control is its inherent robustness and ability to handle
any nonlinear behavior of structures. A new strategy is presented to design the control force of the structural
control system. The feasibility and validity of the proposed strategy are verified by the numerical simulations. 
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1. INTRODUCTION  
 
So far, structural control theory has made considerable progress. There are many algorithms that can be used 
for structural control(Housner,1997;Soong,1990;Gu,1997). However, due to the complexity of the structural 
modeling, the multiplicity of material characteristics, and the uncertainties of load information, designing a
proper and simple algorithm for structural control has not yet been possible. In most of the existing algorithms,
a mathematical model is established for the considered system. Errors in modeling, measurement and
computation are common, and can be serious in some cases. On the contrary, fuzzy control is well-suited for 
this challenge. Compared to a classical controller, a fuzzy controller does not need an exact model, and is
capable of achieving an effective control including rapid response, slight overshooting, high resistance against
disturbances, and so on. On the other hand, since fuzzy control is an experience-based method, the rule table for 
the corresponding system must be derived based on experience and knowledge, and is improved through trial
and error. At present, it is difficult to develop a control rule table for a structural control system due to the lack
of a systematic design method. 
In this context, the authors presented a new strategy for design of fuzzy control rules. In this paper, the
proposed strategy is described first, and then its implementation is also discussed. Based on this strategy, the
control rule table for a Fuzzy Logic Controller (FLC) can be established. A numerical example is given to
illustrate the validity of the proposed strategy using an active tendon system and compared to the linear 
quadratic regulator (LQR) strategy. 
 
 
2. FUZZY RULES 
Assume a MDOF system with active or semi-active control devices under external excitation. The dynamic
equation can be expressed as:  

 
 ( ) ( ) ( ) ( ) ( )ttttt eEfDuKxxCxM +=++ &&&    (2.1) 

 
where ,  and M C K are the mass, the damping and the stiffness matrices of the system including the
structure and installed devices, respectively; ( )tx is the displacement vector; ( )tu  is the control force vector;

 is the excitation vector;  and E are location matrices which define locations of the control force and
the excitation vectors, respectively. 
( )tef D

According to the optimal control theory, the feedback control vector can be designed to be a linear function of 
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the measured displacement vector and velocity vector as x x&

 

 ( ) xGxGu xx &&+=t   (2.2) 
 
in which  and G  are the feedback gain matrices of the displacement and the velocity, respectively.From 
Eq. (2.2), it can be seen that the instantaneous control force of a system depends on its instantaneous state. 

xG x&

Note that there are two basic types of control force: direct, and indirect(Yang,2002a,2002b,and 2003). Direct 
refers to the external force exerted on a structure directly through the active control devices, while indirect
refers to the force exerted on the structure induced by modifying its variable dynamic parameters through 
semiactive control devices. Generally, in semiactive control systems, the indirect control force can be converted
into some adjustable dynamic parameters. In this paper, the control force has this generalized meaning unless
stated otherwise. Two aspects of the problem need to be considered to determine the instantaneous control
force: the direction of the control force and the control force level (or magnitude). 
In analyzing a shear building model with multiple-degree-of-freedoms (MDOFs) as shown in Fig. 1, it is 
assumed that the control force directly acts upon the mass i. Let  and be the relative displacement and 
the relative velocity of the controlled mass, with respect to the ground, respectively; u is the generalized control 
force. According to the motion characteristics, a typical vibration cycle may be divided into four phases. The
fuzzy control rules are described in IF-THEN forms. Assume  and are defined as input variables, whereas 
u is defined as the output or control variable. Values of linguistic variables are defined as the following fuzzy
sets: , , u ={ NB: negative big, NM:negative medium, NS: negative small, ZR: zero, PS: positive small, 
PM:positive medium, PB: positive big}. These fuzzy sets can be used to describe the motion states of the
controlled mass. 

ix ix&

ix ix&

ix ix&

 

 
Figure 1 Division of a vibration cycle of the controlled mass 

 
From a pair of the fuzzy sets corresponding to the variables  and , the detailed motion phase of the 
controlled mass can be identified, and consequently, the corresponding control phase will be determined. The
fuzzy control rule table is shown in Table 2.1. From the positive or negative characteristics of the fuzzy sets
corresponding to the input variables and the output variable, both the motion phases of the controlled mass and
the control force directions can be distinguished; the variety regularity of the control force level can also be 
observed according to the meaning of the semantic values of the fuzzy sets from Table 2.1. Especially, the 
control method, i.e., the suppressing action or intensifying action, can be determined according to the 
relationship between the positive and negative characteristics of the fuzzy sets of the control force and the 
relative velocity of the controlled mass. Four sets of key rules, which are provided in the leading diagonal line,
the minor diagonal, the vertical bisection line and the horizon bisection line, correspond to four representative
control cases. Although the whole rule base of the FLC is difficult to be constructed at one time, these key rules
are easy to be determined. Then, the other rules of the FLC can be determined through interpolation(Yang, 
2005,2006). 

ix ix&

The cases corresponding to the leading diagonal line represent the special cases in the phases  ① and ③ of 
the controlled mass. Under these cases, the fuzzy sets of two input variables are identical, but an inverse
number relationship exists between their fuzzy sets and the fuzzy sets of the control variable. The control force
acts in the reverse direction of either of the input variables, and in a mathematical sense, the control force level
shows a monotonic increase when either of the two input variables change. From the viewpoint of fuzzy logic

③
\

ix& ix
④ix& ixix&ix

②①  
x ix&i
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concepts, the positive or negative characteristics are not considered. For example, when the fuzzy sets of 
and  change from NS to NB, the fuzzy sets of the control force are also shifted from PS to PB. It is obviou

ix

ix& s
that the positive or negative characteristics of the fuzzy sets of the input variables are different from the control
variable, and the corresponding control force behaves as a suppressing action. Meanwhile, the control force
level transfers from low to high.  
The cases corresponding to the minor diagonal line represent the special cases in the phases ② and ④. Under
these cases, the fuzzy sets of two input variables are in an inverse number relationship from the viewpoint of the
semantic values of the fuzzy sets. Consequently, the influence of the relative displacement on the control force
is offset by the relative velocity, and vice visa. Hence, the returning velocity can be regarded as optimal and
accordingly the control forces belong to the fuzzy set ZR. For instance, when the fuzzy set of is PB and iix ix& s
NB, i.e., their semantic values are the positive big and the negative big, respectively, one will counteract the
other. Hence, the fuzzy sets of the control forces may be chosen ZR. Once there is a deviation from the minor
diagonal line, the returning velocity will be no longer be optimal and will need to be tuned. If the returning
velocity is insufficient on one side of the minor diagonal line and is excessive on the other side, both the
suppressing and the intensifying actions will happen simultaneously and the control force will take on a
polarizing trend along the minor diagonal line. 
The cases corresponding to the vertical bisection line indicate that the controlled mass is in the vicinity of its
equilibrium position. The relative velocity of the control mass is mapped to different fuzzy sets with a constant
fuzzy set “ZR” corresponding to the relative displacement, and as a result, the control force levels only vary
with the relative velocity. Actually, the rules located at the vertical bisection line are representative across
equilibrium control, and are aimed at restraining the crossing velocity that corresponds to the equilibrium
position of the controlled mass and isolate one vibration cycle from the next. For instance, when the fuzzy sets
of  corresponding to the vertical bisection line change from NS to NB, the control force also shifts from Pix& S
to PB. The corresponding control force and the motion of the controlled mass are in the opposite direction. The
control force behaves as the suppressing action, and its levels transfer from low to high. 
The cases corresponding to the horizon bisection line indicate that the controlled mass is in the vicinity of its
extremal position. The relative displacement of the control mass is mapped to different fuzzy sets with a
constant fuzzy set “ZR” corresponding to the relative velocity, and as a result, the control force levels only vary
with the relative displacement. For instance, when the fuzzy sets of  corresponding to the horizon bisectioix n
line change from NS to NB, the control force also shifts from PS to PB. The corresponding control force and the
displacement of the controlled mass are in the opposite direction, and its levels transfer from low to high. 
 

Table 2.1 Key rules of fuzzy control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. NUMERICAL EXAMPLE  
 

ix  
u  

NB NM NS ZR PS PM PB

NB PB   PB   ZR

NM  PM  PM  ZR  

NS   PS PS ZR   

ZR PB PM PS ZR NS NM NB

PS   ZR NS NS   

PM  ZR  NM  NM  

ix&  

PB ZR   NB   NB
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The control system analyzed in this example is a three-story shear structure with an active tendon installed in 
the first story. The control scheme of the entire control system is outlined in Fig. 2. In order to evaluate the
proposed strategy, three cases are compared, i.e., the uncontrolled case (NC), a conventional LQR, and a FLC.

 
Figure 2 A 3DOF system with ATS 

 
3.1. Active tendon system 
The control principle of the active tendon system is as follows: when the story drift of the controlled 
structure occurs under external excitations, the controller changes the stretch degree of the tendon by
setting the displacement of the actuator to an approximate value according to a given algorithm;
consequently the corresponding horizontal control force can be generated and exerted on the structure. In 
this numerical example, the fuzzy control rule table is established according to the proposed strategy, and
the control force of the system is designed by using a FLC. 
 
3.2. Fuzzy control 
For the control system shown in Fig. 2, the relative displacement and the relative velocity are 
defined as the input variables, whereas the tensile (control) force is defined as the control variable.
Although the actuator changes the tendon displacement directly, the control force can be calculate

1x 1x&

d
through a simple conversion. Thus, the displacement of the actuator can be mapped to the control force
one by one. Therefore, the control force is chosen as the output variable. 
For convenience of calculation, the triangular membership function shown in Fig. 3 is chosen (Table 3.1). 
Three sets of parameters [a1, a2, α], [b1, b2, β] and [c1, c2, γ] are used to tune the corresponding
membership function(Goto 1994). The values max1x and max1x& in the universe of discourse of the input 
membership functions are prescribed, referring to the uncontrolled case or accepted levels, and the value

maxcF  of the output universe of discourse is determined according to the maximum output force of the
actuator.  

 

 
Figure 3 Membership functions for the input/output variables 

 
Referring to Table 2.1, the control rule table listed in Table 3.2 is established via gradual interpolation. 
This table shows that all of the adjacent rules vary smoothly, and a minor variety is good for the smooth
control of a system. 
 

1m
11,ck
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Table 3.1  Tuning parameters of membership functions 
Parameters  Values 

a1 0.28 

a2 0.57 

α 0.9 

b1 0.22 

b2 0.56 
β 0.90 

c1 0.33 

c2 0.67 

 γ 1 

 
  Table 3.2 Control rule table used 

 

 
 
 
 
 
 
 
 
 
 
 
3.3. Numerical calculation and results 
The parameters of the example structure are listed in Table 3.3, and its dynamic characteristics have been 
studied thoroughly(Chung,1989) . The 1/4-scaled El Centro earthquake record (1940-05-18, S00E) is used 
as the input excitations. Linear behavior of the building is assumed in the simulation of the dynamic
responses. The dynamic response of the structure is limited in the elastic range. 
 

Table 3.3 Parameters of the example building 
Parameters Values 

Mass matrix 

(kg) M ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

98100
09810
00981

 

Stiffness 

matrix 

K (N/m) 

6
10

1.33361.6248-0.3691
1.6248-3.02221.6416-
0.36916416.17417.2

×
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Damping 

matrix 

(N.s/m) C ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

437.5 2.6-61.7
2.6-456.957.3-

61.757.3-382.8
 

 
In the design of the LQR controller, the weighting matrices Q and R are the time invariant weights of the state 
and control force, respectively. They imply the relative importance of the state and the control force, and need

ix
 cF

 NB NM NS ZR PS PM PB

NB PB PM PS PB PM PS ZR

NM PM PM PS PM PS ZR NS

NS PS PS PS PS ZR NS NM

ZR PB PM PS ZR NS NM NB

PS PM PS ZR NS NS NS NS

PM PS ZR NS NM NS NM NM

ix&
 

PB ZR NS NM NB NS NM NB
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to be predetermined based on the expected magnitude of the system response and of the control force.
Therefore, the choice of matrices Q and R is important for computing the optimal controller gains. The control
performance of each strategy is evaluated under prescribed criteria. The weighting matrices have been chosen
according to the evaluation criteria specified for all simulations to ensure the equal peak of the instantaneous 
control force. In this study, the weighting matrix Q is chosen as the identity matrix, and R is condensed into a 
scalar R. By considering the acceptable maximum force levels of the actuator, R is set as follows: 

 
    (3.1) 81003.1 −×=R

 
Table 3.4 lists the maximum responses of the top floor, the maximum control forces and the reduction ratios of
the structural responses by using the LQR strategy or the FLC to the uncontrolled case shown in the brackets
under the scaled El Centro. The results show that the FLC is more effective in reducing both the peak and RMS
of the relative displacement and the absolute acceleration than LQR under the scaled El Centro earthquake. 
 

Table 3.4 Top-floor responses of the example building and control force (1／4 El_Centro) 

Relative displacement (m) Absolute Acceleration (m/s2) Control Force（kN） 
Control Cases 

Peak RMS Peak RMS Peak RMS 

NC  0.0132 0.0025 2.3700 0.4868 - - 

LQR 
0.0077 

(41.7%) 

0.0014 

(44.0%) 

1.8467 

(22.1%) 

0.2987 

(38.6%) 
1.19 0.19 

FLC 
0.0069 

(47.7%) 

0.0012 

(52.0%) 

1.6779 

(29.2%) 

0.2896 

(40.5%) 
1.19 0.27 

Note: numbers in the brackets denote reduction ratios of the responses of a controlled system to those of the uncontrolled system.  
 
Figures 4 plots the time histories of the relative displacement and the absolute acceleration of the top floor and 
the control force under the scaled El Centro. It is observed that there are overall reductions of responses during
the entire periods of vibrations using either strategy. Compared to LQR, however, the FLC results in smaller 
responses from the structure.  

Figure 4 The time histories of the responses of the top floor and the control force under the scaled El Centro
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earthquake input 
 
 
4. CONCLUSION  
 
In this paper, a new strategy for generation of the fuzzy control rules is presented, and applied to a three-story 
shear building with an active tendon system installed in the ground story. Through computer simulation, the
control effectiveness of the proposed strategy is studied and compared with the LQR strategy. The numerical 
results show that the proposed strategy is more effective in reducing both the peak and the RMS of the
responses than LQR under the scaled El Centro earthquake. 
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